scholarly journals Gasification of Biomass in Supercritical Water, Challenges for the Process Design—Lessons Learned from the Operation Experience of the First Dedicated Pilot Plant

Processes ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 455
Author(s):  
Nikolaos Boukis ◽  
I. Katharina Stoll

Gasification of organic matter under the conditions of supercritical water (T > 374 °C, p > 221 bar) is an allothermal, continuous flow process suitable to convert materials with high moisture content (<20 wt.% dry matter) into a combustible gas. The gasification of organic matter with water as a solvent offers several benefits, particularly the omission of an energy-intensive drying process. The reactions are fast, and mean residence times inside the reactor are consequently low (less than 5 min). However, there are still various challenges to be met. The combination of high temperature and pressure and the low concentration of organic matter require a robust process design. Additionally, the low value of the feed and the product predestinate the process for decentralized applications, which is a challenge for the economics of an application. The present contribution summarizes the experience gained during more than 10 years of operation of the first dedicated pilot plant for supercritical water gasification of biomass. The emphasis lies on highlighting the challenges in process design. In addition to some fundamental results gained from comparable laboratory plants, selected experimental results of the pilot plant “VERENA” (acronym for the German expression “experimental facility for the energetic exploitation of agricultural matter”) are presented.

Author(s):  
Yukihiko Matsumura ◽  
Shuhei Inoue ◽  
Takahito Inoue ◽  
Yoshifumi Kawai ◽  
Takashi Noguchi ◽  
...  

2018 ◽  
Vol 61 (4) ◽  
pp. 213-218
Author(s):  
Nattacha Paksung ◽  
Junichi Kato ◽  
Yutaka Nakashimada ◽  
Yukihiko Matsumura

1989 ◽  
Vol 21 (6-7) ◽  
pp. 609-619 ◽  
Author(s):  
Y.-J. Shao ◽  
David Jenkins

Laboratory and pilot plant experiments on anoxic selector activated sludge systems were conducted on two wastewaters in some cases supplemented with nitrate, acetate or glucose. To prevent bulking sufficient anoxic selector detention time and nitrate levels must be available to reduce selector effluent soluble COD to below 100 mg/l and to reduce readily metabolizable organic matter to virtually zero (&lt; 1 mg/l). Soluble COD/NO3-N removal stoichiometry is in the range 6.0-6.7. Selector systems have elevated soluble substrate removal and denitrification rates compared to CSTR systems. These rates are not affected greatly by temperature (20-25°C) for CSTR sludges but are for selector sludges. Upon exhaustion of nitrate in a selector soluble COD leaks out of the activated sludge in significant amounts. Thiothrix sp. and type 021N denitrify only to NO2 and at much slower rates than Zoogloearamigera does to N2. A sequencing batch system provides an optimistic estimate of the SVI that can be obtained by an anoxic selector system.


Sign in / Sign up

Export Citation Format

Share Document