gasification process
Recently Published Documents


TOTAL DOCUMENTS

1135
(FIVE YEARS 323)

H-INDEX

42
(FIVE YEARS 10)

2022 ◽  
Vol 51 ◽  
pp. 101866
Author(s):  
Nanzhu Ai ◽  
Lin Chen ◽  
Yuliang Fu

Author(s):  
Zhihua Zhang ◽  
Jinfeng Bai ◽  
Shaojun Li ◽  
Yang Liu ◽  
Chao Li ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
pp. 98
Author(s):  
Andrej Chríbik ◽  
Marián Polóni ◽  
Ľuboš Magdolen ◽  
Matej Minárik

The aim of the presented article is to analyse the influence of synthesis gas composition on the power, economic, and internal parameters of an atmospheric two-cylinder spark-ignition internal combustion engine (displacement of 686 cm3) designed for a micro-cogeneration unit. Synthesis gases produced mainly from waste contain combustible components as their basic material (methane, hydrogen, and carbon monoxide), as well as inert gases (carbon dioxide and nitrogen). A total of twelve synthesis gases were analysed that fall into the category of medium-energy gases with lower heating value in the range from 8 to 12 MJ/kg. All of the resulting parameters from the operation of the combustion engine powered by synthesis gases were compared with the reference fuel methane. The results show a decrease in the performance parameters for all operating loads and an increase in hourly fuel consumption. Specifically, for the operating speed of the micro-cogeneration unit (1500 L/min), the decrease in power parameters was in the range of 7.1–23.5%; however, the increase in hourly fuel consumption was higher by 270% to 420%. The decrease in effective efficiency ranged from 0.4 to 4.6%, which in percentage terms represented a decrease from 1.3% to 14.5%. The process of fuel combustion was most strongly influenced by the proportion of hydrogen and inert gases in the mixture. It can be concluded that setting up the synthesis gas production in the waste gasification process in order to achieve optimum performance and economic parameters of the combustion engine for a micro cogeneration unit has an influential role and is of crucial importance.


Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 34
Author(s):  
Przemysław Grzywacz ◽  
Grzegorz Czerski ◽  
Wojciech Gańczarczyk

The aim of the study is to assess the influence of the atmosphere during pyrolysis on the course of CO2 gasification of a tire waste char. Two approaches were used: the pyrolysis step was carried out in an inert atmosphere of argon (I) or in an atmosphere of carbon dioxide (II). The examinations were carried out in non-isothermal conditions using a Rubotherm DynTherm thermobalance in the temperature range of 20–1100 °C and three heating rates: 5, 10 and 15 K/min. Based on the results of the gasification examinations, the TG (Thermogravimetry) and DTG (Derivative Thermogravimetry) curves were developed and the kinetic parameters were calculated using the KAS (Kissinger-Akahira-Sunose) and FWO (Flynn-Wall-Ozawa) methods. Additionally, the CO2 gasification of tire chars reaction order (n), was evaluated, and the kinetic parameters were calculated with the use of Coats and Redfern method. Tire waste char obtained in an argon atmosphere was characterized by lower reactivity, which was reflected in shift of conversion and DTG curves to higher temperatures and higher mean values of activation energy. A variability of activation energy values with the progress of the reaction was observed. For char obtained in an argon atmosphere, the activation energy varied in the range of 191.1–277.2 kJ/mol and, for a char obtained in an atmosphere of CO2, in the range of 148.0–284.8 kJ/mol. The highest activation energy values were observed at the beginning of the gasification process and the lowest for the conversion degree 0.5–0.7.


Author(s):  
Ruihan Dong ◽  
Shiliang Yang ◽  
Jianhang Hu ◽  
Fangjun Chen ◽  
Guirong Bao ◽  
...  

Evergreen ◽  
2021 ◽  
Vol 8 (4) ◽  
pp. 717-731
Author(s):  
Hadiza A Umar ◽  
Shaharin A Sulaiman ◽  
M Amin B A Majid ◽  
Mior A Said ◽  
Afsin Gungor ◽  
...  

Processes ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 2094
Author(s):  
Arief Suardi Nur Chairat ◽  
Vendy Antono ◽  
Prayudi Prayudi ◽  
Roswati Nurhasanah ◽  
Hakimul Batih

The usage of palm oil empty fruit bunches (EFBs) in the gasification process adds value to the empty bunches as a renewable energy source. In this study, we design and manufacture a new updraft type of gasifier reactor without a blower so that it does not require electric power in its operation, but uses power from engine suction. Our test results compare the use of biomass waste in conjunction with diesel fuel to run a diesel power plant for 20 min at a load of 10,000 W: diesel with coconut shell charcoal (350 mL), diesel with acacia wood charcoal (380 mL), and diesel with EFB charcoal (400 mL). The test shows that the highest efficient and the most optimal biomass in the gasification process is coconut shell charcoal, because coconut shell charcoal has a dense structure and, at the time of the experiment, the coconut shell charcoal was filled 15 cm below the gas outlet pipe hole. From the standpoint of the economic value of the gasifier reactor that is proposed in this study, the result with the lowest cost is that of diesel with EFB charcoal, because, in this experiment, EFBs were the biomass that was not purchased. The additional use of empty fruit bunches of charcoal is able to save 50% diesel usage.


Sign in / Sign up

Export Citation Format

Share Document