Steady State Analysis of Impulse Customers and Cancellation Policy in Queueing-Inventory System

Processes ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 2146
Author(s):  
V. Vinitha ◽  
N. Anbazhagan ◽  
S. Amutha ◽  
K. Jeganathan ◽  
Gyanendra Prasad Joshi ◽  
...  

This article discusses the queueing-inventory model with a cancellation policy and two classes of customers. The two classes of customers are named ordinary and impulse customers. A customer who does not plan to buy the product when entering the system is called an impulse customer. Suppose the customer enters into the system to buy the product with a plan is called ordinary customer. The system consists of a pool of finite waiting areas of size N and maximum S items in the inventory. The ordinary customer can move to the pooled place if they find that the inventory is empty under the Bernoulli schedule. In such a situation, impulse customers are not allowed to enter into the pooled place. Additionally, the pooled customers buy the product whenever they find positive inventory. If the inventory level falls to s, the replenishment of Q items is to be replaced immediately under the (s, Q) ordering principle. Both arrival streams occur according to the independent Markovian arrival process (MAP), and lead time follows an exponential distribution. In addition, the system allows the cancellation of the purchased item only when there exist fewer than S items in the inventory. Here, the time between two successive cancellations of the purchased item is assumed to be exponentially distributed. The Gaver algorithm is used to obtain the stationary probability vector of the system in the steady-state. Further, the necessary numerical interpretations are investigated to enhance the proposed model.

1984 ◽  
Vol 16 (1) ◽  
pp. 7-7 ◽  
Author(s):  
Marcel F. Neuts

Many queues and related stochastic models, and in particular those that have a matrix-geometric stationary probability vector, have steady-state queue-length densities that are asymptotically geometric. The graph of the asymptotic rate η of these densities as a function of the traffic intensity ρ is the caudal characteristic curve. This is an informative graph from which a number of qualitative inferences about the behavior of the queue may be drawn.


2007 ◽  
Vol 2007 ◽  
pp. 1-12 ◽  
Author(s):  
Paul Manuel ◽  
B. Sivakumar ◽  
G. Arivarignan

This article considers a continuous review perishable (s,S) inventory system in which the demands arrive according to a Markovian arrival process (MAP). The lifetime of items in the stock and the lead time of reorder are assumed to be independently distributed as exponential. Demands that occur during the stock-out periods either enter a pool which has capacity N(<∞) or are lost. Any demand that takes place when the pool is full and the inventory level is zero is assumed to be lost. The demands in the pool are selected one by one, if the replenished stock is above s, with time interval between any two successive selections distributed as exponential with parameter depending on the number of customers in the pool. The waiting demands in the pool independently may renege the system after an exponentially distributed amount of time. In addition to the regular demands, a second flow of negative demands following MAP is also considered which will remove one of the demands waiting in the pool. The joint probability distribution of the number of customers in the pool and the inventory level is obtained in the steady state case. The measures of system performance in the steady state are calculated and the total expected cost per unit time is also considered. The results are illustrated numerically.


2005 ◽  
Vol 37 (02) ◽  
pp. 482-509 ◽  
Author(s):  
Quan-Lin Li ◽  
Yiqiang Q. Zhao

In this paper, we provide a novel approach to studying the heavy-tailed asymptotics of the stationary probability vector of a Markov chain of GI/G/1 type, whose transition matrix is constructed from two matrix sequences referred to as a boundary matrix sequence and a repeating matrix sequence, respectively. We first provide a necessary and sufficient condition under which the stationary probability vector is heavy tailed. Then we derive the long-tailed asymptotics of the R-measure in terms of the RG-factorization of the repeating matrix sequence, and a Wiener-Hopf equation for the boundary matrix sequence. Based on this, we are able to provide a detailed analysis of the subexponential asymptotics of the stationary probability vector.


1995 ◽  
Vol 8 (2) ◽  
pp. 151-176 ◽  
Author(s):  
Attahiru Sule Alfa ◽  
K. Laurie Dolhun ◽  
S. Chakravarthy

We consider a single-server discrete queueing system in which arrivals occur according to a Markovian arrival process. Service is provided in groups of size no more than M customers. The service times are assumed to follow a discrete phase type distribution, whose representation may depend on the group size. Under a probabilistic service rule, which depends on the number of customers waiting in the queue, this system is studied as a Markov process. This type of queueing system is encountered in the operations of an automatic storage retrieval system. The steady-state probability vector is shown to be of (modified) matrix-geometric type. Efficient algorithmic procedures for the computation of the rate matrix, steady-state probability vector, and some important system performance measures are developed. The steady-state waiting time distribution is derived explicitly. Some numerical examples are presented.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Bing-Yuan Pu ◽  
Ting-Zhu Huang ◽  
Chun Wen ◽  
Yi-Qin Lin

An accelerated multilevel aggregation method is presented for calculating the stationary probability vector of an irreducible stochastic matrix in PageRank computation, where the vector extrapolation method is its accelerator. We show how to periodically combine the extrapolation method together with the multilevel aggregation method on the finest level for speeding up the PageRank computation. Detailed numerical results are given to illustrate the behavior of this method, and comparisons with the typical methods are also made.


2005 ◽  
Vol 37 (04) ◽  
pp. 1075-1093 ◽  
Author(s):  
Quan-Lin Li ◽  
Yiqiang Q. Zhao

In this paper, we consider the asymptotic behavior of stationary probability vectors of Markov chains of GI/G/1 type. The generating function of the stationary probability vector is explicitly expressed by theR-measure. This expression of the generating function is more convenient for the asymptotic analysis than those in the literature. TheRG-factorization of both the repeating row and the Wiener-Hopf equations for the boundary row are used to provide necessary spectral properties. The stationary probability vector of a Markov chain of GI/G/1 type is shown to be light tailed if the blocks of the repeating row and the blocks of the boundary row are light tailed. We derive two classes of explicit expression for the asymptotic behavior, the geometric tail, and the semigeometric tail, based on the repeating row, the boundary row, or the minimal positive solution of a crucial equation involved in the generating function, and discuss the singularity classes of the stationary probability vector.


1990 ◽  
Vol 27 (03) ◽  
pp. 521-529 ◽  
Author(s):  
Guy Louchard ◽  
Guy Latouche

We consider a finite Markov chain with nearly-completely decomposable stochastic matrix. We determine bounds for the error, when the stationary probability vector is approximated via a perturbation analysis.


Sign in / Sign up

Export Citation Format

Share Document