scholarly journals In-Situ Spectroelectrochemical Study of Conductive Polyaniline Forms for Sensor Applications

Proceedings ◽  
2020 ◽  
Vol 56 (1) ◽  
pp. 32
Author(s):  
Anja Korent ◽  
Kristina Žagar Soderžnik ◽  
Kristina Žužek Rožman

Our contribution focuses on a correlative study of polyaniline (PANI) electropolymerisation and UV/VIS spectroscopy. PANI was prepared via electro-oxidation using a potentiodynamic method on commercial gold screen-printed electrodes (Au-SPE). By using an in-situ spectroelectrochemical method, the development of the polymer was observed from monomer, monomer oxidation to final polymer formation and its transformations between the oxidation forms. The results confirm the spontaneous doping of the polymer during the polymerisation, the instability of leucoemeraldine form in air and its two-stage oxidation to emeraldine form. The final conductive PANI deposited on Au-SPE will be used as sensor element for the detection of toxic organic compounds.

2006 ◽  
Vol 14 (2) ◽  
pp. 478-482
Author(s):  
Jamie Robinson ◽  
Russell Thomas ◽  
Steve Wallace ◽  
Paddy Daly ◽  
Robert Kalin

Author(s):  
Zhikai Shi ◽  
Zebin Yu ◽  
Ronghua Jiang ◽  
Jun Huang ◽  
Yanping Hou ◽  
...  

The oxygen evolution reaction (OER) is an important half-reaction in the field of energy production. However, how effectively, simply, and greenly to prepare low-cost OER electrocatalysts remains a problem. Herein,...


Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 533 ◽  
Author(s):  
Josué A. Torres-Ávalos ◽  
Leonardo R. Cajero-Zul ◽  
Milton Vázquez-Lepe ◽  
Fernando A. López-Dellamary ◽  
Antonio Martínez-Richa ◽  
...  

Design of a smart drug delivery system is a topic of current interest. Under this perspective, polymer nanocomposites (PNs) of butyl acrylate (BA), methacrylic acid (MAA), and functionalized carbon nanotubes (CNTsf) were synthesized by in situ emulsion polymerization (IEP). Carbon nanotubes were synthesized by chemical vapor deposition (CVD) and purified with steam. Purified CNTs were analyzed by FE-SEM and HR-TEM. CNTsf contain acyl chloride groups attached to their surface. Purified and functionalized CNTs were studied by FT-IR and Raman spectroscopies. The synthesized nanocomposites were studied by XPS, 13C-NMR, and DSC. Anhydride groups link CNTsf to MAA–BA polymeric chains. The potentiality of the prepared nanocomposites, and of their pure polymer matrices to deliver hydrocortisone, was evaluated in vitro by UV–VIS spectroscopy. The relationship between the chemical structure of the synthesized nanocomposites, or their pure polymeric matrices, and their ability to release hydrocortisone was studied by FT-IR spectroscopy. The hydrocortisone release profile of some of the studied nanocomposites is driven by a change in the inter-associated to self-associated hydrogen bonds balance. The CNTsf used to prepare the studied nanocomposites act as hydrocortisone reservoirs.


2014 ◽  
Vol 3 (1) ◽  
pp. 99-110 ◽  
Author(s):  
Hannes Alex ◽  
Norbert Steinfeldt ◽  
Klaus Jähnisch ◽  
Matthias Bauer ◽  
Sandra Hübner

AbstractNanoparticles (NP) have specific catalytic properties, which are influenced by parameters like their size, shape, or composition. Bimetallic NPs, composed of two metal elements can show an improved catalytic activity compared to the monometallic NPs. We, herein, report on the selective aerobic oxidation of benzyl alcohol catalyzed by unsupported Pd/Au and Pd NPs at atmospheric pressure. NPs of varying compositions were synthesized and characterized by UV/Vis spectroscopy, transmission electron microscopy (TEM), and small-angle X-ray scattering (SAXS). The NPs were tested in the model reaction regarding their catalytic activity, stability, and recyclability in batch and continuous procedure. Additionally, in situ extended X-ray absorption fine structure (EXAFS) measurements were performed in order to get insight in the process during NP catalysis.


2016 ◽  
Vol 7 (4) ◽  
pp. 297-304 ◽  
Author(s):  
E. H. Fontes ◽  
Sirlane G. da Silva ◽  
E. V. Spinace´ ◽  
A. O. Neto ◽  
R. F. B. de Souza

Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4155
Author(s):  
Alexander V. Shokurov ◽  
Daria S. Kutsybala ◽  
Andrey P. Kroitor ◽  
Alexander A. Dmitrienko ◽  
Alexander G. Martynov ◽  
...  

Coordination-induced spin crossover (CISCO) in nickel(II) porphyrinates is an intriguing phenomenon that is interesting from both fundamental and practical standpoints. However, in most cases, realization of this effect requires extensive synthetic protocols or extreme concentrations of extra-ligands. Herein we show that CISCO effect can be prompted for the commonly available nickel(II) tetraphenylporphyrinate, NiTPP, upon deposition of this complex at the air/water interface together with a ruthenium(II) phthalocyaninate, CRPcRu(pyz)2, bearing two axial pyrazine ligands. The latter was used as a molecular guiderail to align Ni···Ru···Ni metal centers for pyrazine coordination upon lateral compression of the system, which helps bring the two macrocycles closer together and forces the formation of Ni–pyz bonds. The fact of Ni(II) porphyrinate switching from low- to high-spin state upon acquiring additional ligands can be conveniently observed in situ via reflection-absorption UV-vis spectroscopy. The reversible nature of this interaction allows for dissociation of Ni–pyz bonds, and thus, change of nickel cation spin state, upon expansion of the monolayer.


Sign in / Sign up

Export Citation Format

Share Document