high spin state
Recently Published Documents


TOTAL DOCUMENTS

192
(FIVE YEARS 52)

H-INDEX

25
(FIVE YEARS 2)

2022 ◽  
Vol 8 (1) ◽  
pp. 8
Author(s):  
Komala Pandurangan ◽  
Anthony B. Carter ◽  
Paulo N. Martinho ◽  
Brendan Gildea ◽  
Tibebe Lemma ◽  
...  

Structural and magnetic properties of a new spin crossover complex [Mn(4,6-diOMe-sal2323)]+ in lattices with ClO4−, (1), NO3−, (2), BF4−, (3), CF3SO3−, (4), and Cl− (5) counterions are reported. Comparison with the magnetostructural properties of the C6, C12, C18 and C22 alkylated analogues of the ClO4− salt of [Mn(4,6-diOMe-sal2323)]+ demonstrates that alkylation effectively switches off the thermal spin crossover pathway and the amphiphilic complexes are all high spin. The spin crossover quenching in the amphiphiles is further probed by magnetic, structural and Raman spectroscopic studies of the PF6− salts of the C6, C12 and C18 complexes of a related complex [Mn(3-OMe-sal2323)]+ which confirm a preference for the high spin state in all cases. Structural analysis is used to rationalize the choice of the spin quintet form in the seven amphiphilic complexes and to highlight the non-accessibility of the smaller spin triplet form of the ion more generally in dilute environments. We suggest that lattice pressure is a requirement to stabilize the spin triplet form of Mn3+ as the low spin form is not known to exist in solution.


2021 ◽  
Vol 78 (1) ◽  
pp. 63-69
Author(s):  
Robyn E. Powell ◽  
Martin R. Lees ◽  
Graham J. Tizzard ◽  
Petra J. van Koningsbruggen

The synthesis and crystal structure (100 K) of the title compound, [Fe(C10H11BrN3OS)2]NO3·H2O, is reported. The asymmetric unit consists of an octahedral [FeIII(HL)2]+ cation, where HL − is H-5-Br-thsa-Et or 5-bromosalicylaldehyde 4-ethylthiosemicarbazonate(1−) {systematic name: 4-bromo-2-[(4-ethylthiosemicarbazidoidene)methyl]phenolate}, a nitrate anion and a noncoordinated water molecule. Each HL − ligand binds via the thione S, the imine N and the phenolate O atom, resulting in an FeIIIS2N2O2 chromophore. The ligands are orientated in two perpendicular planes, with the O and S atoms in cis and the N atoms in trans positions. This [Fe(HL)2](anion)·H2O compound contains the first known cationic FeIII entity containing two salicylaldehyde thiosemicarbazone derivatives. The FeIII ion is in the high-spin state at 100 K. In addition, a comparative IR spectroscopic study of the free ligand and the ferric complex is presented, demonstrating that such an analysis provides a quick identification of the degree of deprotonation and the coordination mode of the ligand in this class of metal compounds. The variable-temperature magnetic susceptibility measurements (5–320 K) are consistent with the presence of a high-spin FeIII ion with a zero-field splitting D = 0.439 (1) cm−1.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Aleksandar Matković ◽  
Lukas Ludescher ◽  
Oleg E. Peil ◽  
Apoorva Sharma ◽  
Kevin-P. Gradwohl ◽  
...  

AbstractIntrinsically magnetic layered materials – especially monolayers – suffer from the lack of ambient stability and mostly exhibit magnetic ordering only at cryogenic temperatures. These restrains impose a great challenge for the integration of two-dimensional magnetic materials into future technologies. We propose to overcome this by exploiting phyllosilicates, such as iron-rich talc. Via combined magnetic force microscopy in applied external magnetic fields, superconducting quantum interference device magnetometry, first-principle calculations, and structural analysis, we demonstrate that incorporated iron ions in talc are in a very robust high spin state, resulting in a weak ferromagnetic behavior at room temperature. Iron-rich talc can be thinned down to a monolayer, remaining fully stable under ambient conditions, and retaining magnetic properties even in monolayers. Finally, we propose iron-rich end members of the phyllosilicates as very promising platforms for air-stable magnetic monolayers.


2021 ◽  
Vol 7 (12) ◽  
pp. 153
Author(s):  
Qianqian Yang ◽  
Xiao-Lei Li ◽  
Jinkui Tang

Two dinuclear complexes [M2(H2L)2](ClO4)4·2MeCN (M = Co for Co2 and Fe for Fe2) were synthesized using a symmetric hydrazone ligand with the metal ions in an N6 coordination environment. The crystal structures and magnetic properties were determined by single-crystal X-ray diffraction and magnetic susceptibility measurements. The crystal structure study revealed that the spin centers were all in the high-spin state with a distorted octahedron (Oh) geometry. Dynamic magnetic properties measurements revealed that complex Co2 exhibited field-induced single-molecule magnet properties with two-step relaxation in which the fast relaxation path was from QTM and the slow relaxation path from the thermal relaxation under an applied field.


Author(s):  
R. A. Lanovsky ◽  
A. V. Nikitsin ◽  
M. V. Bushinsky ◽  
N. V. Tereshko ◽  
O. S. Mantytskaya ◽  
...  

A comprehensive study of the crystal structure, magnetic and magnetotransport properties of the La0.5Sr0.5Co1–x Nix O3–d  cobaltite system (x = 0.1–0.16) was carried out. The X-ray measurement results indicate that the unit cell of all solid solutions of the system is cubic and is described by the space group Pm3m. It is found that with an increase in the 540     Doklady of the National Academy of Sciences of Belarus, 2021, vol. 65, no. 5, рр. 539–545 Ni content, the Curie temperature (TC) decreases from 230 to 180 K, as well as magnetization values. The magnetic transition is blurred across the field. The iodometric studies show that the concentration of Co4+ ions in all samples does not exceed 35 %. The chemical substitution of Co ions by Ni ones does not result in significant modification of the unit cell parameters, which may indicate a spin crossover of Co ions. The temperature dependence of resistivity is metallic in character, which indicates the stability of the main conducting ferromagnetic phase. The nature of exchange interactions of different signs between B-sublattice ions completely determines the behavior of the system. An increase in the content of Ni ions leads both to decrease the component of ferromagnetic exchange interactions between Co3+ ions in the intermediate spin state and to increase the fraction of antiferromagnetic and weaker ferromagnetic interactions. In addition, presumably the Co4+ ion can stabilize the high spin state of the closestCo3+ ion and in the next two coordination spheres it can stabilize the Co3+ ion in the low spin state, i. e. the ferromagnetic complexes Co4+–Co3+ (HS) are shielded by the diamagnetic shell of low spin Co3+ ions, which results in decreasing the magnetization values.


Author(s):  
Guangxin Song ◽  
Rui Gao ◽  
Zhao Zhao ◽  
Yujun Zhang ◽  
Huaqiao Tan ◽  
...  

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Chiwei Xu ◽  
Zhengwei Yang ◽  
Xikun Zhang ◽  
Maoting Xia ◽  
Huihui Yan ◽  
...  

AbstractIn the applications of large-scale energy storage, aqueous batteries are considered as rivals for organic batteries due to their environmentally friendly and low-cost nature. However, carrier ions always exhibit huge hydrated radius in aqueous electrolyte, which brings difficulty to find suitable host materials that can achieve highly reversible insertion and extraction of cations. Owing to open three-dimensional rigid framework and facile synthesis, Prussian blue analogues (PBAs) receive the most extensive attention among various host candidates in aqueous system. Herein, a comprehensive review on recent progresses of PBAs in aqueous batteries is presented. Based on the application in different aqueous systems, the relationship between electrochemical behaviors (redox potential, capacity, cycling stability and rate performance) and structural characteristics (preparation method, structure type, particle size, morphology, crystallinity, defect, metal atom in high-spin state and chemical composition) is analyzed and summarized thoroughly. It can be concluded that the required type of PBAs is different for various carrier ions. In particular, the desalination batteries worked with the same mechanism as aqueous batteries are also discussed in detail to introduce the application of PBAs in aqueous systems comprehensively. This report can help the readers to understand the relationship between physical/chemical characteristics and electrochemical properties for PBAs and find a way to fabricate high-performance PBAs in aqueous batteries and desalination batteries.


2021 ◽  
Vol 22 (15) ◽  
pp. 8221
Author(s):  
Riina Harjumäki ◽  
Chris S. Pridgeon ◽  
Magnus Ingelman-Sundberg

CYP2E1 is one of the fifty-seven cytochrome P450 genes in the human genome and is highly conserved. CYP2E1 is a unique P450 enzyme because its heme iron is constitutively in the high spin state, allowing direct reduction of, e.g., dioxygen, causing the formation of a variety of reactive oxygen species and reduction of xenobiotics to toxic products. The CYP2E1 enzyme has been the focus of scientific interest due to (i) its important endogenous function in liver homeostasis, (ii) its ability to activate procarcinogens and to convert certain drugs, e.g., paracetamol and anesthetics, to cytotoxic end products, (iii) its unique ability to effectively reduce dioxygen to radical species causing liver injury, (iv) its capability to reduce compounds, often generating radical intermediates of direct toxic or indirect immunotoxic properties and (v) its contribution to the development of alcoholic liver disease, steatosis and NASH. In this overview, we present the discovery of the enzyme and studies in humans, 3D liver systems and genetically modified mice to disclose its function and clinical relevance. Induction of the CYP2E1 enzyme either by alcohol or high-fat diet leads to increased severity of liver pathology and likelihood to develop ALD and NASH, with subsequent influence on the occurrence of hepatocellular cancer. Thus, fat-dependent induction of the enzyme might provide a link between steatosis and fibrosis in the liver. We conclude that CYP2E1 has many important physiological functions and is a key enzyme for hepatic carcinogenesis, drug toxicity and liver disease.


Author(s):  
Gleb Denisov ◽  
Valentin V. Novikov ◽  
Svetlana A. Belova ◽  
Alexander Belov ◽  
Elizaveta Melnikova ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document