scholarly journals Narrow-Band Thermal Photonic Crystal Emitter for Mid-Infrared Applications

Proceedings ◽  
2018 ◽  
Vol 2 (13) ◽  
pp. 752 ◽  
Author(s):  
Banafsheh Abasahl ◽  
Reyhaneh Jannesari ◽  
Bernhard Jakoby

Mid-infrared (MIR) on-chip sensing on Si has been a progressive topic of research in the recent years due to excitation of vibrational and rotational bands specific to materials in this range and their immunity against visible light and electromagnetic interferences. For on-chip applications, integration of all the optical components including the MIR source is crucial. In this work, we introduce a slab photonic crystal (PhC) thermal source where the birthplace and the filtering of the photons occur in the same region. Due to the forbidden frequency bands and high density of states in the band edge, it provides electric efficiency and filtering performance.

Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Ali Rostamian ◽  
Ehsan Madadi-Kandjani ◽  
Hamed Dalir ◽  
Volker J. Sorger ◽  
Ray T. Chen

Abstract Thanks to the unique molecular fingerprints in the mid-infrared spectral region, absorption spectroscopy in this regime has attracted widespread attention in recent years. Contrary to commercially available infrared spectrometers, which are limited by being bulky and cost-intensive, laboratory-on-chip infrared spectrometers can offer sensor advancements including raw sensing performance in addition to use such as enhanced portability. Several platforms have been proposed in the past for on-chip ethanol detection. However, selective sensing with high sensitivity at room temperature has remained a challenge. Here, we experimentally demonstrate an on-chip ethyl alcohol sensor based on a holey photonic crystal waveguide on silicon on insulator-based photonics sensing platform offering an enhanced photoabsorption thus improving sensitivity. This is achieved by designing and engineering an optical slow-light mode with a high group-index of n g  = 73 and a strong localization of modal power in analyte, enabled by the photonic crystal waveguide structure. This approach includes a codesign paradigm that uniquely features an increased effective path length traversed by the guided wave through the to-be-sensed gas analyte. This PIC-based lab-on-chip sensor is exemplary, spectrally designed to operate at the center wavelength of 3.4 μm to match the peak absorbance for ethanol. However, the slow-light enhancement concept is universal offering to cover a wide design-window and spectral ranges towards sensing a plurality of gas species. Using the holey photonic crystal waveguide, we demonstrate the capability of achieving parts per billion levels of gas detection precision. High sensitivity combined with tailorable spectral range along with a compact form-factor enables a new class of portable photonic sensor platforms when combined with integrated with quantum cascade laser and detectors.


2017 ◽  
Vol 25 (26) ◽  
pp. 32919 ◽  
Author(s):  
Hyunho Jung ◽  
Myungjae Lee ◽  
Changhyun Han ◽  
Yeonsang Park ◽  
Kyung-Sang Cho ◽  
...  

2018 ◽  
Vol 38 (12) ◽  
pp. 1223001
Author(s):  
朱启凡 Zhu Qifan ◽  
付跃刚 Fu Yuegang ◽  
刘智颖 Liu Zhiying

2012 ◽  
Vol 86 (15) ◽  
Author(s):  
S. R. Huisman ◽  
G. Ctistis ◽  
S. Stobbe ◽  
A. P. Mosk ◽  
J. L. Herek ◽  
...  

2018 ◽  
Vol 10 (1) ◽  
pp. 8 ◽  
Author(s):  
Jarosław Cimek ◽  
Xavier Forestier ◽  
Ryszard Stepien ◽  
Mariusz Klimczak ◽  
Ryszard Buczynski

We report on successful synthesis of ZBLAN glass. Different purity of zirconium tetrafluoride used for synthesis and fluorinating agents were analyzed to obtain high optical quality glass. Among fluorinating agents we used ammonium bifluoride, xenon difluoride and sulfur hexafluoride. The best results in form of synthetized glasses have transmission window extending from 0.2 to 8.0 um, which allows to fabricate fibers for mid-infrared applications. Full Text: PDF ReferencesR. Stępień, J. Cimek, D. Pysz, I. Kujawa, M. Klimczak, and R. Buczyński, Soft glasses for photonic crystal fibers and microstructured optical components, Opt. Eng. 53, 071815 (2014). CrossRef D. Pysz, I. Kujawa, R. Stępień, M. Klimczak, A. Filipkowski, M. Franczyk, L. Kociszewski, J. Buźniak, K. Haraśny, R. Buczyński, Stack and draw fabrication of soft glass microstructured fiber optics, Bull. Pol. Acad. Sci.-Tech. Sci., 62(4), 667-683 (2014). CrossRef R. Kasztelanic, I. Kujawa, R. Stępień, K. Haraśny, D. Pysz and R. Buczyński, Molding of soft glass refraction mini lens with hot embossing process for broadband infrared transmission systems, Infrared Phys. Technol. 61, 299-305 (2013). CrossRef Moynihan C.T. (1987) Crystallization Behavior of Fluorozirconate Glasses. In: Almeida R.M. (eds) Halide Glasses for Infrared Fiberoptics. NATO ASI Series (Series E: Applied Sciences), 123, Springer, Dordrecht. CrossRef M. R. Majewski, R. I. Woodward, S. D. Jackson, Dysprosium-doped ZBLAN fiber laser tunable from 2.8?m to 3.4?m, pumped at 1.7?m, Opt. Lett. 43, 971-974 (2018). CrossRef G Bharathan, R. I. Woodward, M. Ams, D. D. Hudson, S. D. Jackson, A. Fuerbach, Direct inscription of Bragg gratings into coated fluoride fibers for widely tunable and robust mid-infrared lasers, Opt. Express 25, 30013-30019 (2017). CrossRef Y. Shen, Y. Wang, H. Chen, K. Luan, M. Tao, J. Si, Wavelength-tunable passively mode-locked mid-infrared Er3+-doped ZBLAN fiber laser, Sci. Rep. 7, 14913 (2017). CrossRef J. Méndez-Ramos, P. Acosta-Mora, J. C. Ruiz-Morales, T. Hernández, M. E. Borges, P. Esparza, Heavy rare-earth-doped ZBLAN glasses for UV?blue up-conversion and white light generation, J. Lumin. 143, 479-483 (2013). CrossRef X. Jiang, N. Y. Joly, M. A. Finger, F. Babic, G. K. L. Wong, J. C. Travers, P. St. J. Russell, Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fibre, Nat. Photonics 9, 133?139 (2015). CrossRef X. Jiang, N. Y. Joly, M. A. Finger, F. Babic, M. Pang, R. Sopalla, M. H. Frosz, S. Poulain, M. Poulain, V. Cardin, J. C. Travers, P. St. J. Russell, Supercontinuum generation in ZBLAN glass photonic crystal fiber with six nanobore cores, Opt. Lett. 41, 4245-4248 (2016). CrossRef A. Medjouri, E. B. Meraghni, H. Hathroubi, D. Abed, L. M. Simohamed, O. Ziane, Design of ZBLAN photonic crystal fiber with nearly zero ultra-flattened chromatic dispersion for supercontinuum generation, Optik 135, 417?425 (2017). CrossRef D. C. Tee, N. Tamchek, C. H. Raymond Ooi, Numerical Modeling of the Fundamental Characteristics of ZBLAN Photonic Crystal Fiber for Communication in 2?3 ?m Midinfrared Region, IEEE Photon. J. 8, 4500713 (2016) . CrossRef Y. Dai, K. Takahashi, I. Yamaguchi, Thermal oxidation of fluorozirconate glass and fibres, J. Mater. Sci. Lett. 12, 1648?1651 (1993). CrossRef P. Hlubina, White-light spectral interferometry with the uncompensated Michelson interferometer and the group refractive index dispersion in fused silica, Opt. Commun. 193, 1-7 (2001). CrossRef F. Gan, Optical properties of fluoride glasses: a review, J. Non Cryst. Sol. 184, 9-20 (1995). CrossRef A. Filipkowski, B. Piechal, D. Pysz, R. Stepien, A. Waddie, M. R. Taghizadeh, and R. Buczynski, Nanostructured gradient index micro axicons made by a modified stack and draw method, Opt. Lett. 40, 5200-5203 (2015). CrossRef R. Kasztelanic, A. Filipkowski, D. Pysz, R. Stepień, A. J. Waddie, M. R. Taghizadeh, and R. Buczynski, High resolution Shack-Hartmann sensor based on array of nanostructured GRIN lenses, Opt. Express 25, 1680-1691 (2017). CrossRef


2012 ◽  
Vol E95.C (7) ◽  
pp. 1244-1251 ◽  
Author(s):  
Koji TAKEDA ◽  
Tomonari SATO ◽  
Takaaki KAKITSUKA ◽  
Akihiko SHINYA ◽  
Kengo NOZAKI ◽  
...  

Nanophotonics ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 2377-2385 ◽  
Author(s):  
Zhao Cheng ◽  
Xiaolong Zhu ◽  
Michael Galili ◽  
Lars Hagedorn Frandsen ◽  
Hao Hu ◽  
...  

AbstractGraphene has been widely used in silicon-based optical modulators for its ultra-broadband light absorption and ultrafast optoelectronic response. By incorporating graphene and slow-light silicon photonic crystal waveguide (PhCW), here we propose and experimentally demonstrate a unique double-layer graphene electro-absorption modulator in telecommunication applications. The modulator exhibits a modulation depth of 0.5 dB/μm with a bandwidth of 13.6 GHz, while graphene coverage length is only 1.2 μm in simulations. We also fabricated the graphene modulator on silicon platform, and the device achieved a modulation bandwidth at 12 GHz. The proposed graphene-PhCW modulator may have potentials in the applications of on-chip interconnections.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hwa-Seub Lee ◽  
Gyu-Weon Hwang ◽  
Tae-Yeon Seong ◽  
Jongkil Park ◽  
Jae Wook Kim ◽  
...  

AbstractMid-infrared wavelengths are called the molecular fingerprint region because it contains the fundamental vibrational modes inherent to the substances of interest. Since the mid-infrared spectrum can provide non-destructive identification and quantitative analysis of unknown substances, miniaturized mid-infrared spectrometers for on-site diagnosis have attained great concern. Filter-array based on-chip spectrometer has been regarded as a promising alternative. In this study, we explore a way of applying a pillar-type plasmonic nanodiscs array, which is advantageous not only for excellent tunability of resonance wavelength but also for 2-dimensional integration through a single layer process, to the multispectral filter array for the on-chip spectrometer. We theoretically and experimentally investigated the optical properties of multi-periodic triangular lattices of metal nanodiscs array that act as stopband filters in the mid-infrared region. Soft-mold reverse nanoimprint lithography with a subsequent lift-off process was employed to fabricate the multispectral filter array and its filter function was successfully extracted using a Fourier transform infrared microscope. With the measured filter function, we tested the feasibility of target spectrum reconstruction using a Tikhonov regularization method for an ill-posed linear problem and evaluated its applicability to the infrared spectroscopic sensor that monitors an oil condition. These results not only verify that the multispectral filter array composed of stopband filters based on the metal nanodiscs array when combined with the spectrum reconstruction technique, has great potential for use to a miniaturized mid-infrared on-chip spectrometer, but also provide effective guidance for the filter design.


Sign in / Sign up

Export Citation Format

Share Document