scholarly journals Explaining Aggregated Recovery Rates

Risks ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 18
Author(s):  
Stephan Höcht ◽  
Aleksey Min ◽  
Jakub Wieczorek ◽  
Rudi Zagst

This study on explaining aggregated recovery rates (ARR) is based on the largest existing loss and recovery database for commercial loans provided by Global Credit Data, which includes defaults from 5 continents and over 120 countries. The dependence of monthly ARR from bank loans on various macroeconomic factors is examined and sources of their variability are stated. For the first time, an influence of stochastically estimated monthly growth of GDP USA and Europe is quantified. To extract monthly signals of GDP USA and Europe, dynamic factor models for panel data of different frequency information are employed. Then, the behavior of the ARR is investigated using several regression models with unshifted and shifted explanatory variables in time to improve their forecasting power by taking into account the economic situation after the default. An application of a Markov switching model shows that the distribution of the ARR differs between crisis and prosperity times. The best fit among the compared models is reached by the Markov switching model. Moreover, a significant influence of the estimated monthly growth of GDP in Europe is observed for both crises and prosperity times.

Author(s):  
Sebastian Fossati

AbstractLatent factors estimated from panels of macroeconomic indicators are used to generate recession probabilities for the US economy. The focus is on current (rather than future) business conditions. Two macro factors are considered: (1) a dynamic factor estimated by maximum likelihood from a set of 4 monthly series; (2) the first of eight static factors estimated by principal components using a panel of 102 monthly series. Recession probabilities generated using standard probit, autoregressive probit, and Markov-switching models exhibit very different properties. Overall, a simple Markov-switching model based on the big data macro factor generates the sequence of out-of-sample class predictions that better approximates NBER recession months. Nevertheless, it is shown that the selection of the best performing model depends on the forecaster’s relative tolerance for false positives and false negatives.


2019 ◽  
Vol 183 ◽  
pp. 672-683 ◽  
Author(s):  
Sebastian Wolf ◽  
Jan Kloppenborg Møller ◽  
Magnus Alexander Bitsch ◽  
John Krogstie ◽  
Henrik Madsen

2018 ◽  
Vol 8 (3) ◽  
pp. 221
Author(s):  
Prima Respati ◽  
Budi Purwanto ◽  
Abdul Kohar Irwanto

<p><em>ABSTRACT</em></p><p><em>Various research including Panggabean (2010) and Usman (2016) show that the long-term trend of Indonesia's capital market is on an uptrend, marked by more bullish periods and longer duration than bearish; and the development determined by rising rates of return rather than interest rates and exchange rates (Defrizal et al, 2015). However, the research has not determined yet whether there are any difference risks in bullish and bearish conditions, especially for systematic or market risk. This study aims to 1) identify the bullish and bearish segmentation period using the Markov Switching Model, and 2) measure systematic risk using the capital assets pricing model (CAPM) with the Sharpe beta indicator. Using the composite stock price index (JCI) and trading data from TICMI (The Indonesia Capital Market Institute) period 2011-2016, consists of 560 issuers, it was found that there were 10 segments that could be identified as 5 bullish periods for 30 weeks , and 5 bearish periods for 8 weeks. Other finding indicates that the probability of switching from bullish to bearish is 3.33% and from bearish to bullish is 12.14%. That means there are positive sentiments that the market tends to be bullish rather than vice versa. The result of beta or systematic risk identification indicates that during bullish and bearish period the market proved to be different risk. Other interesting findings, in both these two different conditions there are negative betas exist that still gives a positive yield.</em></p><p> </p><p>ABSTRAK</p><p>Berbagai riset termasuk Panggabean (2010) dan Usman (2016) menunjukkan bahwa kecenderungan jangka panjang pasar modal Indonesia berada pada kecenderungan naik (uptrend), ditandai dengan periode bullish lebih banyak, dan durasi lebih panjang, daripada bearish.  Perkembangan perkembangan itu dipicu oleh kenaikan tingkat imbalan, alih-alih suku bunga dan nilai tukar (Defrizal et al 2015). Namun riset-riset tersebut tidak mengidentifikasi eksistensi kondisi bullish dan bearish dan berdampak perbedaan risiko, terutama risiko sistematis atau risiko pasar, kecuali mengasumsikan saja keberadaannya.  Penelitian ini bertujuan 1) mengidentifikasi segmentasi periode bullish dan bearish dengan menggunakan model perpindahan Markov (Markov Switching), dan mengukur risiko sistematis menggunakan model penilaian modal (capital assets pricing model, CAPM) dengan indikator beta Sharpe.  Menggunakan data indeks harga saham gabungan (IHSG) serta data perdagangan bersumber dari TICMI (The Indonesia Capital Market Institute) periode 2011-2016 yang mencakup 560 emiten, diperoleh hasil bahwa dalam periode tersebut terdapat 10 segmen yang dapat diidentifikasi sebagai 5 periode bullish selama 30 pekan, dan 5 periode bearish selama 8 pekan.  Temuan lain menunjukkan bahwa peluang perpindahan dari kondisi bullish ke bearish sebesar 3,33% dan dari kondisi bearish ke bullish sebesar 12,14%. Artinya terdapat sentimen positif bahwa pasar cenderung menjadi bullish daripada sebaliknya.  Hasil identifikasi risiko sistematis menunjukkan, berbeda dengan konsep dasar CAPM, bahwa beta pada periode bullish dan bearish tidak sama.  Temuan menarik lainnya, pada kedua kondisi tersebut terdapat beta negatif yang dapat memberikan tingat imbalan positif.</p>


Sign in / Sign up

Export Citation Format

Share Document