scholarly journals A Study of the Intensity of Tropical Cyclone Idai Using Dual-Polarization Sentinel-1 Data

2019 ◽  
Vol 11 (23) ◽  
pp. 2837 ◽  
Author(s):  
Peng Yu ◽  
Johnny A. Johannessen ◽  
Xiao-Hai Yan ◽  
Xupu Geng ◽  
Xiaojing Zhong ◽  
...  

Monitoring the intensity and size of a tropical cyclone (TC) is a challenging task, and is important for reducing losses of lives and property. In this study, we use Idai, one of the deadliest TCs on record in the Southern Hemisphere, as an example. Dual-polarization synthetic aperture radar (SAR) measurements from the Copernicus Sentinel-1 mission are used to examine the TC structure and intensity. The wind speed is estimated and compared using well known C-band model functions based on calibrated cross-polarization SAR images. Because of the relatively high noise floor of the Sentinel-1 data, wind speeds under 20 m/s from cross-polarization models are ignored and replaced by low to moderate wind speeds retrieved from co-polarization radar signals. Wind fields retrieved from the co- and cross-polarization model results are then merged together to estimate the TC size and the TC fullness scale, a concept related to the wind structure of a storm. Idai has a very strong wind speed and fullness structure, indicating that it was indeed a very intense storm. The approach demonstrates that open and freely available Sentinel-1 SAR data is a unique dataset to estimate the potential destructiveness of similar natural disasters like Idai.

2020 ◽  
Vol 37 (9) ◽  
pp. 1713-1724
Author(s):  
Yuan Gao ◽  
Changlong Guan ◽  
Jian Sun ◽  
Lian Xie

AbstractRecent studies indicate that the cross-polarization synthetic aperture radar (SAR) images have the ability of retrieving high wind speed on ocean surface without wind direction input. This study presents a new approach for tropical cyclone (TC) wind speed retrieval utilizing thermal-noise-removed Sentinel-1 dual-polarization (VV + VH) Extra-Wide Swath (EW) Mode products. Based on 20 images of 9 TCs observed in the 2016 and 2018 and SAR-collocated European Centre for Medium-Range Weather Forecasts (ECMWF) fifth-generation reanalysis (ERA5) data and the National Oceanic and Atmospheric Administration (NOAA) Hurricane Research Division’s (HRD) Real-time Hurricane Wind Analysis System (H*Wind) data, a subswath-based geophysical model function (GMF) Sentinel-1 EW Mode Wind Speed Retrieval Model after Noise Removal (S1EW.NR) is developed and validated statistically. TC wind speed is retrieved by using the proposed GMF and the C-band model 5.N (CMOD5.N). The results show that the wind speeds retrieved by the S1EW.NR model are in good agreement with wind references up to 31 m s−1. The correlation coefficient, bias, and standard deviation between the retrieval results and reference wind speeds are 0.74, −0.11, and 3.54 m s−1, respectively. Comparison of the wind speeds retrieved from both channels suggests that the cross-polarized signal is more suitable for high–wind speed retrieval, indicating the promising capability of cross-polarization SAR for TC monitoring.


2018 ◽  
Author(s):  
Christoph Schlager ◽  
Gottfried Kirchengast ◽  
Juergen Fuchsberger ◽  
Alexander Kann ◽  
Heimo Truhetz

Abstract. Empirical high-resolution surface wind fields, automatically generated by a weather diagnostic application, the WegenerNet Wind Product Generator (WPG), were intercompared with wind field analysis data from the Integrated Nowcasting through Comprehensive Analysis (INCA) system and with dynamical climate model wind field data from the non-hydrostatic climate model COSMO-CLM. The INCA analysis fields are available at a horizontal grid spacing of 1 km x 1 km, whereas the COSMO model fields are from simulations at a 3 km x 3 km grid. The WPG, developed by Schlager et al. (2017, 2018), generates diagnostic fields at a high resolution grid of 100 m x 100 m, using observations from two dense meteorological station networks: The WegenerNet Feldbach Region (FBR) and its alpine sister network, the WegenerNet Johnsbachtal (JBT). The high-density WegenerNet FBR is located in southeastern Styria, Austria, a region predominated by a hilly terrain and small differences in altitude. The network consists of more than 150 meteorological stations. The WegenerNet JBT contains eleven meteorological stations at elevations ranging from about 600 m to 2200 m in a mountainous region in northern Styria. The wind fields of these different empirical/dynamical modeling approaches were intercompared for thermally induced and strong wind events, using hourly temporal resolutions as supplied by the WPG, with the focus on evaluating spatial differences and displacements between the different datasets. For this comparison, a novel neighborhood-based spatial wind verification methodology based on fractions skill socres (FSS) is used to estimate the modeling performances. All comparisons show an increasing FSS with increasing neighborhood size. In general, the spatial verification indicates a better statistical agreement for the hilly WegenerNet FBR than for the mountainous WegenerNet JBT. The results for the WegenerNet FBR show a better agreement between INCA and WegenerNet than between COSMO and WegenerNet wind fields, especially for large scales (neighborhoods). In particular, COSMO-CLM clearly underperforms in case of thermally induced wind events. For the JBT region, all spatial comparisons indicate little overlap at small neighborhood sizes and in general large biases of wind vectors occur between the dynamical (COSMO) and analysis (INCA) fields and the diagnostic (WegenerNet) reference dataset. Furthermore, gridpoint-based error measures were calculated for the same evaluation cases. The statistical agreement, estimated for the vector-mean wind speed and wind directions show again a better agreement for the WegenerNet FBR than for the WegenerNet JBT region. In general, the difference between modeled and observed wind directions is smaller for strong wind speed events than for thermally induced ones. A combined examination of all spatial and gridpoint-based error measures shows that COSMO-CLM with its limited horizontal resolution of 3 km x 3 km and hence, a too smoothed orography, is not able to represent small-scale wind patterns. The results for the JBT region indicate that the INCA analysis fields generally overestimate wind speeds in the summit regions. For strong wind speed events the wind speed in the valleys is underestimated by INCA, however. Regarding the WegenerNet diagnostic wind fields, the statistics show decent performance in the FBR and somewhat overestimated wind speeds for strong wind speed events in the Enns valley of the JBT region.


2017 ◽  
Vol 32 (4) ◽  
pp. 1301-1319 ◽  
Author(s):  
Christoph Schlager ◽  
Gottfried Kirchengast ◽  
Jürgen Fuchsberger

Abstract An operational weather diagnostics application for automatic generation of wind fields in near–real time from observations delivered by the high-density WegenerNet meteorological station network in the Feldbach region of Austria is introduced. The purpose of the application is to empirically provide near-surface wind fields of very high spatial and temporal resolution for evaluating convection-permitting climate models as well as investigating weather and climate variability on a local scale. The diagnostic California Meteorological Model (CALMET) is used as the core tool. This model computes 3D wind fields based on observational weather data, a digital elevation model, and land-use categories. The application first produces the required input files from the WegenerNet stations and subsequently runs the CALMET model based on this input. In a third step the modeled wind fields are stored in the WegenerNet data archives every 30 min with a spatial resolution of 100 m × 100 m, while also generating averaged weather and climate products during postprocessing. The performance of the modeling against station observations, for which wind speeds were classified into weak and strong wind speeds, is evaluated and reasonably good results were found for both wind speed classes. The statistical agreement for the vector-mean wind speed is slightly better for weak wind speeds than for strong ones while the difference between modeled and observed wind directions is smaller for strong wind speeds than for weak ones. The application is also a valuable tool for other high-density networks.


2019 ◽  
Author(s):  
Kees Nederhoff ◽  
Alessio Giardino ◽  
Maarten van Ormondt ◽  
Deepak Vatvani

Abstract. Parametric wind profiles are commonly applied in a number of engineering applications for the generation of tropical cyclone (TC) wind and pressure fields. Nevertheless, existing formulations for computing wind fields often lack the required accuracy when the TC geometry is not known. This may affect the accuracy of the computed impacts generated by these winds. In this paper, empirical stochastic relationships are derived to describe two important parameters affecting the TC geometry: radius of maximum winds (RMW) and the radius of gale force winds (∆AR35). These relationships are formulated using best track data (BTD) for all seven ocean basins (Atlantic, S/NW/NE Pacific, N/SW/SE Indian Oceans). This makes it possible to a) estimate RMW and ∆AR35 when these properties are not known and b) generate improved parametric wind fields for all oceanic basins. Validation results show how the proposed relationships allow the TC geometry to be represented with higher accuracy than when using relationships available from the literature. Outer wind speeds can be well reproduced by the commonly used Holland wind profile when calibrated using information either from best-track-data or from the proposed relationships. The scripts to compute the TC geometry and the outer wind speed are freely available via Delft Dashboard.


2019 ◽  
Vol 19 (11) ◽  
pp. 2359-2370 ◽  
Author(s):  
Kees Nederhoff ◽  
Alessio Giardino ◽  
Maarten van Ormondt ◽  
Deepak Vatvani

Abstract. Parametric wind profiles are commonly applied in a number of engineering applications for the generation of tropical cyclone (TC) wind and pressure fields. Nevertheless, existing formulations for computing wind fields often lack the required accuracy when the TC geometry is not known. This may affect the accuracy of the computed impacts generated by these winds. In this paper, empirical stochastic relationships are derived to describe two important parameters affecting the TC geometry: radius of maximum winds (RMW) and the radius of gale-force winds (ΔAR35). These relationships are formulated using best-track data (BTD) for all seven ocean basins (Atlantic; S, NW, and NE Pacific; and N, SW, and SE Indian oceans). This makes it possible to (a) estimate RMW and ΔAR35 when these properties are not known and (b) generate improved parametric wind fields for all oceanic basins. Validation results show how the proposed relationships allow the TC geometry to be represented with higher accuracy than when using relationships available from literature. Outer wind speeds can be reproduced well by the commonly used Holland wind profile when calibrated using information either from best-track data or from the proposed relationships. The scripts to compute the TC geometry and the outer wind speed are freely available via the following URL: https://bit.ly/2k9py1J (last access: October 2019).


2006 ◽  
Vol 134 (5) ◽  
pp. 1505-1517 ◽  
Author(s):  
Wolfgang Koch ◽  
Frauke Feser

Abstract Wind vectors over the ocean were extracted from a large number of synthetic aperture radar (SAR) images from the European Remote Sensing Satellites (ERS-1 and ERS-2). The wind directions are inferred from the orientation of wind streaks that are imaged by the SAR, while the wind speeds are retrieved by inversion of the C-band model CMOD4. The derived wind directions and speeds were compared to wind vectors from the numerical Regional Model (REMO) that are available hourly on a 55-km grid. The large number of comparisons and independent weather situations allowed for an analysis of subsets that are classified by SAR-derived wind speed. A strong decrease of the standard deviation of directional differences with increasing wind speed was found. Biases of directional differences depend on SAR wind speed as well. Furthermore, the influence of the temporal difference between SAR overflight and model and an automatic image filtering on the directional error is demonstrated. Overall, reasonable fields of wind vectors were extracted from SAR imagery in 70 of 80 cases. These fields provide valuable information for validation of numerical models of the atmosphere and case studies of coastal wind fields.


2021 ◽  
Vol 13 (22) ◽  
pp. 4501
Author(s):  
Yuan Gao ◽  
Jie Zhang ◽  
Changlong Guan ◽  
Jian Sun

The spaceborne synthetic aperture radar (SAR) cross-polarization signal remains sensitive to sea surface wind speed with high signal-to-noise ratio under tropical cyclone (TC) conditions. It has the capability of observing TC intensity and size information over the ocean with large coverage and high spatial resolution. In this paper, TC wind distribution characteristics were studied based on SAR images. We collected 41 Sentinel-1A/B cross-polarization images covering TC eye, which were acquired between 2016 and 2020. For each case, sea surface wind speeds were retrieved by the modified MS1A model in a spatial resolution of 1 km. After deriving the value and location of maximum wind speed, wind fields were simulated symmetrically within a 200 km radius. Two new methodologies were proposed to calculate the decay index and the symmetry index based on the retrieved and simulated wind fields. Characteristics of the two indices were analyzed with respect to maximum wind. In addition, the maximum and averaged wind speeds of the right, back and left side of the motion direction were compared with TC intensity and storm motion speed. Statistical results indicate that right-side wind speed is the strongest for maximum and average, the wind difference between the left and right side is dependent on storm motion speed.


2019 ◽  
Vol 11 (14) ◽  
pp. 1682 ◽  
Author(s):  
Torsten Geldsetzer ◽  
Shahid K. Khurshid ◽  
Kerri Warner ◽  
Filipe Botelho ◽  
Dean Flett

RADARSAT Constellation Mission (RCM) compact polarimetry (CP) data were simulated using 504 RADARSAT-2 quad-pol SAR images. These images were used to samples CP data in three RCM modes to build a data set with co-located ocean wind vector observations from in situ buoys on the West and East coasts of Canada. Wind speeds up to 18 m/s were included. CP and linear polarization parameters were related to the C-band model (CMOD) geophysical model functions CMOD-IFR2 and CMOD5n. These were evaluated for their wind retrieval potential in each RCM mode. The CP parameter Conformity was investigated to establish a data-quality threshold (>0.2), to ensure high-quality data for model validation. An accuracy analysis shows that the first Stokes vector (SV0) and the right-transmit vertical-receive backscatter (RV) parameters were as good as the VV backscatter with CMOD inversion. SV0 produced wind speed retrieval accuracies between 2.13 m/s and 2.22 m/s, depending on the RCM mode. The RCM Medium Resolution 50 m mode produced the best results. The Low Resolution 100 m and Low Noise modes provided similar results. The efficacy of SV0 and RV imparts confidence in the continuity of robust wind speed retrieval with RCM CP data. Three image-based case studies illustrate the potential for the application of CP parameters and RCM modes in operational wind retrieval systems. The results of this study provide guidance to direct research objectives once RCM is launched. The results also provide guidance for operational RCM data implementation in Canada’s National SAR winds system, which provides near-real-time wind speed estimates to operational marine forecasters and meteorologists within Environment and Climate Change Canada.


2017 ◽  
Vol 32 (6) ◽  
pp. 2217-2227 ◽  
Author(s):  
Siri Sofie Eide ◽  
John Bjørnar Bremnes ◽  
Ingelin Steinsland

Abstract In this paper, probabilistic wind speed forecasts are constructed based on ensemble numerical weather prediction (NWP) forecasts for both wind speed and wind direction. Including other NWP variables in addition to the one subject to forecasting is common for statistical calibration of deterministic forecasts. However, this practice is rarely seen for ensemble forecasts, probably because of a lack of methods. A Bayesian modeling approach (BMA) is adopted, and a flexible model class based on splines is introduced for the mean model. The spline model allows both wind speed and wind direction to be included nonlinearly. The proposed methodology is tested for forecasting hourly maximum 10-min wind speeds based on ensemble forecasts from the European Centre for Medium-Range Weather Forecasts at 204 locations in Norway for lead times from +12 to +108 h. An improvement in the continuous ranked probability score is seen for approximately 85% of the locations using the proposed method compared to standard BMA based on only wind speed forecasts. For moderate-to-strong wind the improvement is substantial, while for low wind speeds there is generally less or no improvement. On average, the improvement is 5%. The proposed methodology can be extended to include more NWP variables in the calibration and can also be applied to other variables.


2009 ◽  
Vol 137 (2) ◽  
pp. 745-765 ◽  
Author(s):  
Kevin A. Hill ◽  
Gary M. Lackmann

Abstract The Weather Research and Forecasting Advanced Research Model (WRF-ARW) was used to perform idealized tropical cyclone (TC) simulations, with domains of 36-, 12-, and 4-km horizontal grid spacing. Tests were conducted to determine the sensitivity of TC intensity to the available surface layer (SL) and planetary boundary layer (PBL) parameterizations, including the Yonsei University (YSU) and Mellor–Yamada–Janjic (MYJ) schemes, and to horizontal grid spacing. Simulations were run until a quasi-steady TC intensity was attained. Differences in minimum central pressure (Pmin) of up to 35 hPa and maximum 10-m wind (V10max) differences of up to 30 m s−1 were present between a convection-resolving nested domain with 4-km grid spacing and a parent domain with cumulus parameterization and 36-km grid spacing. Simulations using 4-km grid spacing are the most intense, with the maximum intensity falling close to empirical estimates of maximum TC intensity. Sensitivity to SL and PBL parameterization also exists, most notably in simulations with 4-km grid spacing, where the maximum intensity varied by up to ∼10 m s−1 (V10max) or ∼13 hPa (Pmin). Values of surface latent heat flux (LHFLX) are larger in MYJ than in YSU at the same wind speeds, and the differences increase with wind speed, approaching 1000 W m−2 at wind speeds in excess of 55 m s−1. This difference was traced to a larger exchange coefficient for moisture, CQ, in the MYJ scheme. The exchange coefficients for sensible heat (Cθ) and momentum (CD) varied by <7% between the SL schemes at the same wind speeds. The ratio Cθ/CD varied by <5% between the schemes, whereas CQ/CD was up to 100% larger in MYJ, and the latter is theorized to contribute to the differences in simulated maximum intensity. Differences in PBL scheme mixing also likely played a role in the model sensitivity. Observations of the exchange coefficients, published elsewhere and limited to wind speeds <30 m s−1, suggest that CQ is too large in the MYJ SL scheme, whereas YSU incorporates values more consistent with observations. The exchange coefficient for momentum increases linearly with wind speed in both schemes, whereas observations suggest that the value of CD becomes quasi-steady beyond some critical wind speed (∼30 m s−1).


Sign in / Sign up

Export Citation Format

Share Document