scholarly journals Combining Multi-Source Data and Machine Learning Approaches to Predict Winter Wheat Yield in the Conterminous United States

2020 ◽  
Vol 12 (8) ◽  
pp. 1232 ◽  
Author(s):  
Yumiao Wang ◽  
Zhou Zhang ◽  
Luwei Feng ◽  
Qingyun Du ◽  
Troy Runge

Winter wheat (Triticum aestivum L.) is one of the most important cereal crops, supplying essential food for the world population. Because the United States is a major producer and exporter of wheat to the world market, accurate and timely forecasting of wheat yield in the United States (U.S.) is fundamental to national crop management as well as global food security. Previous studies mainly have focused on developing empirical models using only satellite remote sensing images, while other yield determinants have not yet been adequately explored. In addition, these models are based on traditional statistical regression algorithms, while more advanced machine learning approaches have not been explored. This study used advanced machine learning algorithms to establish within-season yield prediction models for winter wheat using multi-source data to address these issues. Specifically, yield driving factors were extracted from four different data sources, including satellite images, climate data, soil maps, and historical yield records. Subsequently, two linear regression methods, including ordinary least square (OLS) and least absolute shrinkage and selection operator (LASSO), and four well-known machine learning methods, including support vector machine (SVM), random forest (RF), Adaptive Boosting (AdaBoost), and deep neural network (DNN), were applied and compared for estimating the county-level winter wheat yield in the Conterminous United States (CONUS) within the growing season. Our models were trained on data from 2008 to 2016 and evaluated on data from 2017 and 2018, with the results demonstrating that the machine learning approaches performed better than the linear regression models, with the best performance being achieved using the AdaBoost model (R2 = 0.86, RMSE = 0.51 t/ha, MAE = 0.39 t/ha). Additionally, the results showed that combining data from multiple sources outperformed single source satellite data, with the highest accuracy being obtained when the four data sources were all considered in the model development. Finally, the prediction accuracy was also evaluated against timeliness within the growing season, with reliable predictions (R2 > 0.84) being able to be achieved 2.5 months before the harvest when the multi-source data were combined.

2020 ◽  
Vol 12 (2) ◽  
pp. 236 ◽  
Author(s):  
Jichong Han ◽  
Zhao Zhang ◽  
Juan Cao ◽  
Yuchuan Luo ◽  
Liangliang Zhang ◽  
...  

Wheat is one of the main crops in China, and crop yield prediction is important for regional trade and national food security. There are increasing concerns with respect to how to integrate multi-source data and employ machine learning techniques to establish a simple, timely, and accurate crop yield prediction model at an administrative unit. Many previous studies were mainly focused on the whole crop growth period through expensive manual surveys, remote sensing, or climate data. However, the effect of selecting different time window on yield prediction was still unknown. Thus, we separated the whole growth period into four time windows and assessed their corresponding predictive ability by taking the major winter wheat production regions of China as an example in the study. Firstly we developed a modeling framework to integrate climate data, remote sensing data and soil data to predict winter wheat yield based on the Google Earth Engine (GEE) platform. The results show that the models can accurately predict yield 1~2 months before the harvesting dates at the county level in China with an R2 > 0.75 and yield error less than 10%. Support vector machine (SVM), Gaussian process regression (GPR), and random forest (RF) represent the top three best methods for predicting yields among the eight typical machine learning models tested in this study. In addition, we also found that different agricultural zones and temporal training settings affect prediction accuracy. The three models perform better as more winter wheat growing season information becomes available. Our findings highlight a potentially powerful tool to predict yield using multiple-source data and machine learning in other regions and for crops.


2021 ◽  
pp. 1-4
Author(s):  
Mathieu D'Aquin ◽  
Stefan Dietze

The 29th ACM International Conference on Information and Knowledge Management (CIKM) was held online from the 19 th to the 23 rd of October 2020. CIKM is an annual computer science conference, focused on research at the intersection of information retrieval, machine learning, databases as well as semantic and knowledge-based technologies. Since it was first held in the United States in 1992, 28 conferences have been hosted in 9 countries around the world.


2020 ◽  
pp. 97-102
Author(s):  
Benjamin Wiggins

Can risk assessment be made fair? The conclusion of Calculating Race returns to actuarial science’s foundations in probability. The roots of probability rest in a pair of problems posed to Blaise Pascal and Pierre de Fermat in the summer of 1654: “the Dice Problem” and “the Division Problem.” From their very foundation, the mathematics of probability offered the potential not only to be used to gain an advantage (as in the case of the Dice Problem), but also to divide material fairly (as in the case of the Division Problem). As the United States and the world enter an age driven by Big Data, algorithms, artificial intelligence, and machine learning and characterized by an actuarialization of everything, we must remember that risk assessment need not be put to use for individual, corporate, or government advantage but, rather, that it has always been capable of guiding how to distribute risk equitably instead.


2019 ◽  
Vol 11 (9) ◽  
pp. 1088 ◽  
Author(s):  
Yulong Wang ◽  
Xingang Xu ◽  
Linsheng Huang ◽  
Guijun Yang ◽  
Lingling Fan ◽  
...  

The accurate and timely monitoring and evaluation of the regional grain crop yield is more significant for formulating import and export plans of agricultural products, regulating grain markets and adjusting the planting structure. In this study, an improved Carnegie–Ames–Stanford approach (CASA) model was coupled with time-series satellite remote sensing images to estimate winter wheat yield. Firstly, in 2009 the entire growing season of winter wheat in the two districts of Tongzhou and Shunyi of Beijing was divided into 54 stages at five-day intervals. Net Primary Production (NPP) of winter wheat was estimated by the improved CASA model with HJ-1A/B satellite images from 39 transits. For the 15 stages without HJ-1A/B transit, MOD17A2H data products were interpolated to obtain the spatial distribution of winter wheat NPP at 5-day intervals over the entire growing season of winter wheat. Then, an NPP-yield conversion model was utilized to estimate winter wheat yield in the study area. Finally, the accuracy of the method to estimate winter wheat yield with remote sensing images was verified by comparing its results to the ground-measured yield. The results showed that the estimated yield of winter wheat based on remote sensing images is consistent with the ground-measured yield, with R2 of 0.56, RMSE of 1.22 t ha−1, and an average relative error of −6.01%. Based on time-series satellite remote sensing images, the improved CASA model can be used to estimate the NPP and thereby the yield of regional winter wheat. This approach satisfies the accuracy requirements for estimating regional winter wheat yield and thus may be used in actual applications. It also provides a technical reference for estimating large-scale crop yield.


2021 ◽  
Author(s):  
Amit Kumar Srivast ◽  
Nima Safaei ◽  
Saeed Khaki ◽  
Gina Lopez ◽  
Wenzhi Zeng ◽  
...  

Abstract Crop yield forecasting depends on many interactive factors including crop genotype, weather, soil, and management practices. This study analyzes the performance of machine learning and deep learning methods for winter wheat yield prediction using extensive datasets of weather, soil, and crop phenology. We propose a convolutional neural network (CNN) which uses the 1-dimentional convolution operation to capture the time dependencies of environmental variables. The proposed CNN, evaluated along with other machine learning models for winter wheat yield prediction in Germany, outperformed all other models tested. To address the seasonality, weekly features were used that explicitly take soil moisture and meteorological events into account. Our results indicated that nonlinear models such as deep learning models and XGboost are more effective in finding the functional relationship between the crop yield and input data compared to linear models and deep neural networks had a higher prediction accuracy than XGboost. One of the main limitations of machine learning models is their black box property. Therefore, we moved beyond prediction and performed feature selection, as it provides key results towards explaining yield prediction (variable importance by time). As such, our study indicates which variables have the most significant effect on winter wheat yield.


Author(s):  
H. Wang ◽  
Q. Li ◽  
X. Du ◽  
L. Zhao ◽  
Y. Lu ◽  
...  

Wheat is the most widely grown crop globally and an essential source of calories in human diets. Maintaining and increasing global wheat production is therefore strongly linked to food security. In this paper, the evaluation model of winter wheat potential productivity was proposed based on agro-ecological zone and the historical winter wheat yield data in recent 30 years (1983-2011) obtained from FAO. And the potential productions of winter wheat in the world were investigated. The results showed that the realistic potential productivity of winter wheat in Western Europe was highest and it was more than 7500 kg/hm2. The realistic potential productivity of winter wheat in North China Plain were also higher, which was about 6000 kg/hm2. However, the realistic potential productivity of winter wheat in the United States which is the main winter wheat producing country were not high, only about 3000 kg/hm2. In addition to these regions which were the main winter wheat producing areas, the realistic potential productivity in other regions of the world were very low and mainly less than 1500 kg/hm2, like in southwest region of Russia. The gaps between potential productivity and realistic productivity of winter wheat in Kazakhstan and India were biggest, and the percentages of the gap in realistic productivity of winter wheat in Kazakhstan and India were more than 40%. In Russia, the gap between potential productivity and realistic productivity of winter wheat was lowest and the percentage of the gap in realistic productivity of winter wheat in Russia was only 10%.


2019 ◽  
Vol 8 (6) ◽  
Author(s):  
Vivek Khanal ◽  
Akhtar Ali

Cucurbit aphid-borne yellows virus (CABYV) was first described in France in 1992 and since then has been reported in various parts of the world, including the United States. Here, we present the first complete genome sequence of a CABYV isolate (BL4) that was collected from pumpkin during the 2017 growing season in Oklahoma.


Sign in / Sign up

Export Citation Format

Share Document