scholarly journals The Capability of Integrating Optical and Microwave Data for Detecting Soil Moisture in an Oasis Region

2020 ◽  
Vol 12 (9) ◽  
pp. 1358 ◽  
Author(s):  
Shuai Huang ◽  
Jianli Ding ◽  
Bohua Liu ◽  
Xiangyu Ge ◽  
Jinjie Wang ◽  
...  

In the earth ecosystem, surface soil moisture is an important factor in the process of energy exchange between land and atmosphere, which has a strong control effect on land surface evapotranspiration, water migration, and carbon cycle. Soil moisture is particularly important in an oasis region because of its fragile ecological environment. Accordingly, a soil moisture retrieval model was conducted based on Dubois model and ratio model. Based on the Dubois model, the in situ soil roughness was used to simulate the backscattering coefficient of bare soil, and the empirical relationship was established with the measured soil moisture. The ratio model was used to eliminate the backscattering contribution of vegetation, in which three vegetation indices were used to characterize vegetation growth. The results were as follows: (1) the Dubois model was used to calibrate the unknown parameters of the ratio model and verified the feasibility of the ratio model to simulate the backscattering coefficient. (2) All three vegetation indices (Normalized Difference Vegetation Index (NDVI), Vegetation Water Content (VWC), and Enhanced Vegetation Index (EVI)) can represent the scattering characteristics of vegetation in an oasis region, but the VWC vegetation index is more suitable than the others. (3) Based on the Dubois model and ratio model, the soil moisture retrieval model was conducted, and the in situ soil moisture was used to analyze the accuracy of the simulated soil moisture, which found that the soil moisture retrieval accuracy is the highest under VWC vegetation index, and the coefficient of determination is 0.76. The results show that the soil moisture retrieval model conducted on the Dubois model and ratio model is feasible.

2001 ◽  
Vol 5 (4) ◽  
pp. 671-678 ◽  
Author(s):  
E.J. Burke ◽  
W.J. Shuttleworth ◽  
A.N. French

Abstract. Surface soil moisture and the nature of the overlying vegetation both influence microwave emission from land surfaces significantly. One widely discussed but underused method for allowing for the effect of vegetation on soil-moisture retrievals from microwave observations is to use remotely sensed vegetation indices. This paper explores the potential for using the Normalised Difference Vegetation Index (NDVI) in soil-moisture retrievals from L-band (1.4 GHz) aircraft data gathered during the Southern Great Plains '97 (SGP97) experiment. A simplified version of MICRO-SWEAT, a soil vegetation atmosphere transfer (SVAT) scheme coupled with a microwave emission model, was used as the retrieval algorithm. Estimates of the optical depth of the vegetation, the parameter that describes the effect of the vegetation on microwave emission, were obtained by calibrating this retrieval algorithm against measurements of soil moisture at 15 field sites. A significant relationship was found between the optical depth so obtained and the observed NDVI at these sites, although this relationship changed with the resolution of the microwave brightness temperature observations used. Soil-moisture estimates made with the retrieval algorithm using the empirical relationship between optical depth and NDVI applied at two additional sites not used in the calibration show good agreement with field measurements. Keywords: NDVI, soil moisture, passive microwave, SGP97


2018 ◽  
Vol 22 (10) ◽  
pp. 5341-5356 ◽  
Author(s):  
Seyed Hamed Alemohammad ◽  
Jana Kolassa ◽  
Catherine Prigent ◽  
Filipe Aires ◽  
Pierre Gentine

Abstract. Characterizing soil moisture at spatiotemporal scales relevant to land surface processes (i.e., of the order of 1 km) is necessary in order to quantify its role in regional feedbacks between the land surface and the atmospheric boundary layer. Moreover, several applications such as agricultural management can benefit from soil moisture information at fine spatial scales. Soil moisture estimates from current satellite missions have a reasonably good temporal revisit over the globe (2–3-day repeat time); however, their finest spatial resolution is 9 km. NASA's Soil Moisture Active Passive (SMAP) satellite has estimated soil moisture at two different spatial scales of 36 and 9 km since April 2015. In this study, we develop a neural-network-based downscaling algorithm using SMAP observations and disaggregate soil moisture to 2.25 km spatial resolution. Our approach uses the mean monthly Normalized Differenced Vegetation Index (NDVI) as ancillary data to quantify the subpixel heterogeneity of soil moisture. Evaluation of the downscaled soil moisture estimates against in situ observations shows that their accuracy is better than or equal to the SMAP 9 km soil moisture estimates.


2014 ◽  
Vol 567 ◽  
pp. 705-710
Author(s):  
Abdalhaleem A. Hassaballa ◽  
Abdul Nasir Matori ◽  
Helmi Z.M. Shafri

Soil moisture (MC) is considered as the most significant boundary conditions controlling most of the hydrological cycle’s processes especially over humid areas. However, MC is very critical parameter to measure because of its variability in both space and time. The fluctuation of MC along the soil depth in turn, makes it so difficult to assess from optical satellite techniques. The study aims to produce a rectified satellite’s surface temperature (Ts) in order to enhance the spatial estimation of MC. The study also aims to produce MC estimates from three variable depths of the soil using optical images from NOAA 17 in order to examine the potential of satellite techniques in assessing the MC along the soil depths. The universal triangle (UT) algorithm was used for MC assessment based on Ts, vegetation Indices (VI) and field measurements of MC; which were conducted at variable depths. The study area was divided into three classes according to the nature of surface cover. The resultant MC extracted from the UT method with rectified Ts, produced accuracies of MC ranging from 0.65 to 0.89 when validated with in-situ measured MC at depths 5cm and 10 cm respectively.


2019 ◽  
Vol 1 (11) ◽  
Author(s):  
Ichirow Kaihotsu ◽  
Jun Asanuma ◽  
Kentaro Aida ◽  
Dambaravjaa Oyunbaatar

Abstract This study evaluated the Advanced Microwave Scanning Radiometer 2 (AMSR2) L2 soil moisture product (ver. 3) using in situ hydrological observational data, acquired over 7 years (2012–2018), from a 50 × 50 km flat area of the Mongolian Plateau covered with bare soil, pasture and shrubs. Although AMSR2 slightly underestimated soil moisture content at 3-cm depth, satisfactory timing was observed in both the response patterns and the in situ soil moisture data, and the differences between these factors were not large. In terms of the relationship between AMSR2 soil moisture from descending orbits and in situ measured soil moisture at 3-cm depth, the values of the RMSE (m3/m3) and the bias (m3/m3) varied from 0.028 to 0.063 and from 0.011 to − 0.001 m3/m3, respectively. The values of the RMSE and bias depended on rainfall condition. The mean value of the RMSE for the 7-year period was 0.042 m3/m3, i.e., lower than the target accuracy 0.050 m3/m3. The validation results for descending orbits were found slightly better than for ascending orbits. Comparison of the Soil Moisture and Ocean Salinity (SMOS) soil moisture product with the AMSR2 L2 soil moisture product showed that AMSR2 could observe surface soil moisture with nearly same accuracy and stability. However, the bias of the AMSR2 soil moisture measurement was slightly negative and poorer than that of SMOS with deeper soil moisture measurement. It means that AMSR2 cannot effectively measure soil moisture at 3-cm depth. In situ soil temperature at 3-cm depth and surface vegetation (normalized difference vegetation index) did not influence the underestimation of AMSR2 soil moisture measurements. These results suggest that a possible cause of the underestimation of AMSR2 soil moisture measurements is the difference between the depth of the AMSR2 observations and in situ soil moisture measurements. Overall, this study proved the AMSR2 L2 soil moisture product has been useful for monitoring daily surface soil moisture over large grassland areas and it clearly demonstrated the high-performance capability of AMSR2 since 2012.


Sensors ◽  
2020 ◽  
Vol 20 (23) ◽  
pp. 6732
Author(s):  
Haixia Qi ◽  
Bingyu Zhu ◽  
Zeyu Wu ◽  
Yu Liang ◽  
Jianwen Li ◽  
...  

Leaf area index (LAI) is used to predict crop yield, and unmanned aerial vehicles (UAVs) provide new ways to monitor LAI. In this study, we used a fixed-wing UAV with multispectral cameras for remote sensing monitoring. We conducted field experiments with two peanut varieties at different planting densities to estimate LAI from multispectral images and establish a high-precision LAI prediction model. We used eight vegetation indices (VIs) and developed simple regression and artificial neural network (BPN) models for LAI and spectral VIs. The empirical model was calibrated to estimate peanut LAI, and the best model was selected from the coefficient of determination and root mean square error. The red (660 nm) and near-infrared (790 nm) bands effectively predicted peanut LAI, and LAI increased with planting density. The predictive accuracy of the multiple regression model was higher than that of the single linear regression models, and the correlations between Modified Red-Edge Simple Ratio Index (MSR), Ratio Vegetation Index (RVI), Normalized Difference Vegetation Index (NDVI), and LAI were higher than the other indices. The combined VI BPN model was more accurate than the single VI BPN model, and the BPN model accuracy was higher. Planting density affects peanut LAI, and reflectance-based vegetation indices can help predict LAI.


2020 ◽  
Vol 10 (16) ◽  
pp. 5540 ◽  
Author(s):  
Maria Casamitjana ◽  
Maria C. Torres-Madroñero ◽  
Jaime Bernal-Riobo ◽  
Diego Varga

Surface soil moisture is an important hydrological parameter in agricultural areas. Periodic measurements in tropical mountain environments are poorly representative of larger areas, while satellite resolution is too coarse to be effective in these topographically varied landscapes, making spatial resolution an important parameter to consider. The Las Palmas catchment area near Medellin in Colombia is a vital water reservoir that stores considerable amounts of water in its andosol. In this tropical Andean setting, we use an unmanned aerial vehicle (UAV) with multispectral (visible, near infrared) sensors to determine the correlation of three agricultural land uses (potatoes, bare soil, and pasture) with surface soil moisture. Four vegetation indices (the perpendicular drought index, PDI; the normalized difference vegetation index, NDVI; the normalized difference water index, NDWI, and the soil-adjusted vegetation index, SAVI) were applied to UAV imagery and a 3 m resolution to estimate surface soil moisture through calibration with in situ field measurements. The results showed that on bare soil, the indices that best fit the soil moisture results are NDVI, NDWI and PDI on a detailed scale, whereas on potatoes crops, the NDWI is the index that correlates significantly with soil moisture, irrespective of the scale. Multispectral images and vegetation indices provide good soil moisture understanding in tropical mountain environments, with 3 m remote sensing images which are shown to be a good alternative to soil moisture analysis on pastures using the NDVI and UAV images for bare soil and potatoes.


2019 ◽  
Vol 11 (6) ◽  
pp. 649 ◽  
Author(s):  
Koffi Noumonvi ◽  
Mitja Ferlan ◽  
Klemen Eler ◽  
Giorgio Alberti ◽  
Alessandro Peressotti ◽  
...  

The Eddy Covariance method (EC) is widely used for measuring carbon (C) and energy fluxes at high frequency between the atmosphere and the ecosystem, but has some methodological limitations and a spatial restriction to an area, called a footprint. Remotely sensed information is usually used in combination with eddy covariance data in order to estimate C fluxes over larger areas. In fact, spectral vegetation indices derived from available satellite data can be combined with EC measurements to estimate C fluxes outside of the tower footprint. Following this approach, the present study aimed to model C fluxes for a karst grassland in Slovenia. Three types of model were considered: (1) a linear relationship between Net Ecosystem Exchange (NEE) or Gross Primary Production (GPP) and each vegetation index; (2) a linear relationship between GPP and the product of a vegetation index with PAR (Photosynthetically Active Radiation); and (3) a simplified LUE (Light Use-Efficiency) model assuming a constant LUE. We compared the performance of several vegetation indices derived from two remote platforms (Landsat and Proba-V) as predictors of NEE and GPP, based on three accuracy metrics, the coefficient of determination (R2), the Root Mean Square Error (RMSE) and the Akaike Information Criterion (AIC). Two types of aggregation of flux data were explored: midday average and daily average fluxes. The vapor pressure deficit (VPD) was used to separate the growing season into two phases, a wet and a dry phase, which were considered separately in the modelling process, in addition to the growing season as a whole. The results showed that NDVI is the best predictor of GPP and NEE during the wet phase, whereas water-related vegetation indices, namely LSWI and MNDWI, were the best predictors during the dry phase, both for midday and daily aggregates. Model 1 (linear relationship) was found to be the best in many cases. The best regression equations obtained were used to map GPP and NEE for the whole study area. Digital maps obtained can practically contribute, in a cost-effective way to the management of karst grasslands.


Water ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2160
Author(s):  
Daniel Kibirige ◽  
Endre Dobos

Soil moisture (SM) is a key variable in the climate system and a key parameter in earth surface processes. This study aimed to test the citizen observatory (CO) data to develop a method to estimate surface SM distribution using Sentinel-1B C-band Synthetic Aperture Radar (SAR) and Landsat 8 data; acquired between January 2019 and June 2019. An agricultural region of Tard in western Hungary was chosen as the study area. In situ soil moisture measurements in the uppermost 10 cm were carried out in 36 test fields simultaneously with SAR data acquisition. The effects of environmental covariates and the backscattering coefficient on SM were analyzed to perform SM estimation procedures. Three approaches were developed and compared for a continuous four-month period, using multiple regression analysis, regression-kriging and cokriging with the digital elevation model (DEM), and Sentinel-1B C-band and Landsat 8 images. CO data were evaluated over the landscape by expert knowledge and found to be representative of the major SM distribution processes but also presenting some indifferent short-range variability that was difficult to explain at this scale. The proposed models were evaluated using statistical metrics: The coefficient of determination (R2) and root mean square error (RMSE). Multiple linear regression provides more realistic spatial patterns over the landscape, even in a data-poor environment. Regression kriging was found to be a potential tool to refine the results, while ordinary cokriging was found to be less effective. The obtained results showed that CO data complemented with Sentinel-1B SAR, Landsat 8, and terrain data has the potential to estimate and map soil moisture content.


2020 ◽  
Author(s):  
Yang Lu ◽  
Justin Sheffield

<p>Global population is projected to keep increasing rapidly in the next 3 decades, particularly in dryland regions of the developing world, making it a global imperative to enhance crop production. However, improving current crop production in these regions is hampered by yield gaps due to poor soils, lack of irrigation and other management practices. Here we develop a crop modelling capability to help understand gaps, and apply to dryland regions where data for parametrizing and testing models is generally lacking. We present a data assimilation framework to improve simulation capability by assimilating in-situ soil moisture and vegetation data into the FAO AquaCrop model. AquaCrop is a water-driven model that simulates canopy growth, biomass and crop yield as a function of water productivity. The key strength of AquaCrop lies in the low requirement for input data thanks to its simple structure. A global sensitivity analysis is first performed using the Morris screening method and the variance-based Extended Fourier Amplitude Sensitivity Test (EFAST) method to identify the key influential parameters on the model outputs. We begin with state-only updates by assimilating different combinations of soil moisture and vegetation data (vegetation indices, biomass, etc.), and different filtering/smoothing assimilation strategies are tested. Based on the state-only assimilation results, we further evaluate the utility of joint state-parameter (augmented-states) assimilation in improving the model performance. The framework will eventually be extended to assimilate remote sensing estimates of soil moisture and vegetation data to overcome the lack of in-situ data more generally in dryland regions.</p>


2013 ◽  
Vol 10 (6) ◽  
pp. 7963-7997 ◽  
Author(s):  
A. McNally ◽  
C. Funk ◽  
G. J. Husak ◽  
J. Michaelsen ◽  
B. Cappelaere ◽  
...  

Abstract. Rainfall gauge networks in Sub-Saharan Africa are inadequate for assessing Sahelian agricultural drought, hence satellite-based estimates of precipitation and vegetation indices such as the Normalized Difference Vegetation Index (NDVI) provide the main source of information for early warning systems. While it is common practice to translate precipitation into estimates of soil moisture, it is difficult to quantitatively compare precipitation and soil moisture estimates with variations in NDVI. In the context of agricultural drought early warning, this study quantitatively compares rainfall, soil moisture and NDVI using a simple statistical model to translate NDVI values into estimates of soil moisture. The model was calibrated using in-situ soil moisture observations from southwest Niger, and then used to estimate root zone soil moisture across the African Sahel from 2001–2012. We then used these NDVI-soil moisture estimates (NSM) to quantify agricultural drought, and compared our results with a precipitation-based estimate of soil moisture (the Antecedent Precipitation Index, API), calibrated to the same in-situ soil moisture observations. We also used in-situ soil moisture observations in Mali and Kenya to assess performance in other water-limited locations in sub Saharan Africa. The separate estimates of soil moisture were highly correlated across the semi-arid, West and Central African Sahel, where annual rainfall exhibits a uni-modal regime. We also found that seasonal API and NDVI-soil moisture showed high rank correlation with a crop water balance model, capturing known agricultural drought years in Niger, indicating that this new estimate of soil moisture can contribute to operational drought monitoring. In-situ soil moisture observations from Kenya highlighted how the rainfall-driven API needs to be recalibrated in locations with multiple rainy seasons (e.g., Ethiopia, Kenya, and Somalia). Our soil moisture estimates from NDVI, on the other hand, performed well in Niger, Mali and Kenya. This suggests that the NDVI-soil moisture relationship may be more robust across rainfall regimes than the API because the relationship between NDVI and plant available water is less reliant on local characteristics (e.g., infiltration, runoff, evaporation) than the relationship between rainfall and soil moisture.


Sign in / Sign up

Export Citation Format

Share Document