scholarly journals Evaluation and Normalization of Topographic Effects on Vegetation Indices

2020 ◽  
Vol 12 (14) ◽  
pp. 2290
Author(s):  
Rui Chen ◽  
Gaofei Yin ◽  
Guoxiang Liu ◽  
Jing Li ◽  
Aleixandre Verger

The normalization of topographic effects on vegetation indices (VIs) is a prerequisite for their proper use in mountainous areas. We assessed the topographic effects on the normalized difference vegetation index (NDVI), the enhanced vegetation index (EVI), the soil adjusted vegetation index (SAVI), and the near-infrared reflectance of terrestrial vegetation (NIRv) calculated from Sentinel-2. The evaluation was based on two criteria: the correlation with local illumination condition and the dependence on aspect. Results show that topographic effects can be neglected for the NDVI, while they heavily influence the SAVI, EVI, and NIRv: the local illumination condition explains 19.85%, 25.37%, and 26.69% of the variation of the SAVI, EVI, and NIRv, respectively, and the coefficients of variation across different aspects are, respectively, 8.13%, 10.46%, and 14.07%. We demonstrated the applicability of existing correction methods, including statistical-empirical (SE), sun-canopy-sensor with C-correction (SCS + C), and path length correction (PLC), dedicatedly designed for reflectance, to normalize topographic effects on VIs. Our study will benefit vegetation monitoring with VIs over mountainous areas.

2021 ◽  
Vol 18 (9) ◽  
pp. 2843-2857
Author(s):  
Anteneh Getachew Mengistu ◽  
Gizaw Mengistu Tsidu ◽  
Gerbrand Koren ◽  
Maurits L. Kooreman ◽  
K. Folkert Boersma ◽  
...  

Abstract. The carbon cycle of tropical terrestrial vegetation plays a vital role in the storage and exchange of atmospheric CO2. But large uncertainties surround the impacts of land-use change emissions, climate warming, the frequency of droughts, and CO2 fertilization. This culminates in poorly quantified carbon stocks and carbon fluxes even for the major ecosystems of Africa (savannas and tropical evergreen forests). Contributors to this uncertainty are the sparsity of (micro-)meteorological observations across Africa's vast land area, a lack of sufficient ground-based observation networks and validation data for CO2, and incomplete representation of important processes in numerical models. In this study, we therefore turn to two remotely sensed vegetation products that have been shown to correlate highly with gross primary production (GPP): sun-induced fluorescence (SIF) and near-infrared reflectance of vegetation (NIRv). The former is available from an updated product that we recently published (Sun-Induced Fluorescence of Terrestrial Ecosystems Retrieval – SIFTER v2), which specifically improves retrievals in tropical environments. A comparison against flux tower observations of daytime-partitioned net ecosystem exchange from six major biomes in Africa shows that SIF and NIRv reproduce the seasonal patterns of GPP well, resulting in correlation coefficients of >0.9 (N=12 months, four sites) over savannas in the Northern and Southern hemispheres. These coefficients are slightly higher than for the widely used Max Planck Institute for Biogeochemistry (MPI-BGC) GPP products and enhanced vegetation index (EVI). Similarly to SIF signals in the neighboring Amazon, peak productivity occurs in the wet season coinciding with peak soil moisture and is followed by an initial decline during the early dry season, which reverses when light availability peaks. This suggests similar leaf dynamics are at play. Spatially, SIF and NIRv show a strong linear relation (R>0.9; N≥250 pixels) with multi-year MPI-BGC GPP even within single biomes. Both MPI-BGC GPP and the EVI show saturation relative to peak NIRv and SIF signals during high-productivity months, which suggests that GPP in the most productive regions of Africa might be larger than suggested.


2020 ◽  
Author(s):  
Anteneh Getachew Mengistu ◽  
Gizaw Mengistu Tsidu ◽  
Gerbrand Koren ◽  
Maurits L. Kooreman ◽  
K. Folkert Boersma ◽  
...  

Abstract. The carbon cycle of tropical terrestrial vegetation plays a vital role in the storage and exchange of atmospheric CO2. But large uncertainties surround the impacts of land-use change emissions, climate warming, the frequency of droughts, and CO2 fertilization. This culminates in poorly quantified carbon stocks and carbon fluxes even for the major ecosystems of Africa (savannas, and tropical evergreen forests). Contributors to this uncertainty are the sparsity of (micro-)meteorological observations across Africa's vast land area, a lack of sufficient ground-based observation networks and validation data for CO2, and incomplete representation of important processes in numerical models. In this study, we, therefore, turn to two remotely-sensed vegetation products that have shown to correlate highly with Gross Primary Production (GPP): Sun-Induced Fluorescence (SIF) and Near-Infrared Reflectance of vegetation (NIRv). The former is available from an updated product that we recently published (SIFTER v2), which specifically improves retrievals in tropical environments. A comparison against flux tower observations of daytime-partitioned Net Ecosystem Exchange from six major biomes in Africa shows that SIF and NIRv reproduce the seasonal patterns of GPP well, resulting in correlation coefficients of > 0.9 (N = 12 months, 4 sites) over savannas in the northern and southern hemispheres. These coefficients are slightly higher than for the widely used MPI-BGC GPP products and Enhanced Vegetation Index (EVI). Similar to SIF signals in the neighboring Amazon, peak productivity occurs in the wet season coinciding with peak soil moisture, and is followed by an initial decline during the early dry season, that reverses when light availability peaks. This suggests similar leaf dynamics are at play. Spatially, SIF and NIRv show a strong linear relation (R > 0.9, N = 250 + pixels) with multi-year MPI-BGC GPP even within single biomes. Both MPI-BGC GPP and EVI show saturation relative to peak NIRv and SIF signals during high productivity months, which suggests that GPP in the most productive regions of Africa might be larger than suggested.


2020 ◽  
Vol 17 (2) ◽  
pp. 405-422 ◽  
Author(s):  
Alexander J. Turner ◽  
Philipp Köhler ◽  
Troy S. Magney ◽  
Christian Frankenberg ◽  
Inez Fung ◽  
...  

Abstract. Solar-induced chlorophyll fluorescence (SIF) has been shown to be a powerful proxy for photosynthesis and gross primary productivity (GPP). The recently launched TROPOspheric Monitoring Instrument (TROPOMI) features the required spectral resolution and signal-to-noise ratio to retrieve SIF from space. Here, we present a downscaling method to obtain 500 m spatial resolution SIF over California. We report daily values based on a 14 d window. TROPOMI SIF data show a strong correspondence with daily GPP estimates at AmeriFlux sites across multiple ecosystems in California. We find a linear relationship between SIF and GPP that is largely invariant across ecosystems with an intercept that is not significantly different from zero. Measurements of SIF from TROPOMI agree with MODerate Resolution Imaging Spectroradiometer (MODIS) vegetation indices – the normalized difference vegetation index (NDVI), enhanced vegetation index (EVI), and near-infrared reflectance of vegetation index (NIRv) – at annual timescales but indicate different temporal dynamics at monthly and daily timescales. TROPOMI SIF data show a double peak in the seasonality of photosynthesis, a feature that is not present in the MODIS vegetation indices. The different seasonality in the vegetation indices may be due to a clear-sky bias in the vegetation indices, whereas previous work has shown SIF to have a low sensitivity to clouds and to detect the downregulation of photosynthesis even when plants appear green. We further decompose the spatiotemporal patterns in the SIF data based on land cover. The double peak in the seasonality of California's photosynthesis is due to two processes that are out of phase: grasses, chaparral, and oak savanna ecosystems show an April maximum, while evergreen forests peak in June. An empirical orthogonal function (EOF) analysis corroborates the phase offset and spatial patterns driving the double peak. The EOF analysis further indicates that two spatiotemporal patterns explain 84 % of the variability in the SIF data. Results shown here are promising for obtaining global GPP at sub-kilometer spatial scales and identifying the processes driving carbon uptake.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Fan Liu ◽  
Chuankuan Wang ◽  
Xingchang Wang

Abstract Background Vegetation indices (VIs) by remote sensing are widely used as simple proxies of the gross primary production (GPP) of vegetation, but their performances in capturing the inter-annual variation (IAV) in GPP remain uncertain. Methods We evaluated the performances of various VIs in tracking the IAV in GPP estimated by eddy covariance in a temperate deciduous forest of Northeast China. The VIs assessed included the normalized difference vegetation index (NDVI), the enhanced vegetation index (EVI), and the near-infrared reflectance of vegetation (NIRv) obtained from tower-radiometers (broadband) and the Moderate Resolution Imaging Spectroradiometer (MODIS), respectively. Results We found that 25%–35% amplitude of the broadband EVI tracked the start of growing season derived by GPP (R2: 0.56–0.60, bias < 4 d), while 45% (or 50%) amplitudes of broadband (or MODIS) NDVI represented the end of growing season estimated by GPP (R2: 0.58–0.67, bias < 3 d). However, all the VIs failed to characterize the summer peaks of GPP. The growing-season integrals but not averaged values of the broadband NDVI, MODIS NIRv and EVI were robust surrogates of the IAV in GPP (R2: 0.40–0.67). Conclusion These findings illustrate that specific VIs are effective only to capture the GPP phenology but not the GPP peak, while the integral VIs have the potential to mirror the IAV in GPP.


2021 ◽  
Author(s):  
Georg Wohlfahrt ◽  
Albin Hammerle ◽  
Barbara Rainer ◽  
Florian Haas

&lt;p&gt;Ongoing changes in climate (both in the means and the extremes) are increasingly challenging grapevine production in the province of South Tyrol (Italy). Here we ask the question whether sun-induced chlorophyll fluorescence (SIF) observed remotely from space can detect early warning signs of stress in grapevine and thus help guide mitigation measures.&lt;/p&gt;&lt;p&gt;Chlorophyll fluorescence refers to light absorbed by chlorophyll molecules that is re-emitted in the red to far-red wavelength region. Previous research at leaf and canopy scale indicated that SIF correlates with the plant photosynthetic uptake of carbon dioxide as it competes for the same energy pool.&lt;/p&gt;&lt;p&gt;To address this question, we use time series of two down-scaled SIF products (GOME-2 and OCO-2, 2007/14-2018) as well as the original OCO-2 data (2014-2019). As a benchmark, we use several vegetation indices related to canopy greenness, as well as a novel near-infrared radiation-based vegetation index (2000-2019). Meteorological data fields are used to explore possible weather-related causes for observed deviations in remote sensing data. Regional DOC grapevine census data (2000-2019) are used as a reference for the analyses.&lt;/p&gt;


Weed Science ◽  
2006 ◽  
Vol 54 (02) ◽  
pp. 346-353 ◽  
Author(s):  
Francisca López-Granados ◽  
Montse Jurado-Expósito ◽  
Jose M. Peña-Barragán ◽  
Luis García-Torres

Field research was conducted to determine the potential of hyperspectral and multispectral imagery for late-season discrimination and mapping of grass weed infestations in wheat. Differences in reflectance between weed-free wheat and wild oat, canarygrass, and ryegrass were statistically significant in most 25-nm-wide wavebands in the 400- and 900-nm spectrum, mainly due to their differential maturation. Visible (blue, B; green, G; red, R) and near infrared (NIR) wavebands and five vegetation indices: Normalized Difference Vegetation Index (NDVI), Ratio Vegetation Index (RVI), R/B, NIR-R and (R − G)/(R + G), showed potential for discriminating grass weeds and wheat. The efficiency of these wavebands and indices were studied by using color and color-infrared aerial images taken over three naturally infested fields. In StaCruz, areas infested with wild oat and canarygrass patches were discriminated using the indices R, NIR, and NDVI with overall accuracies (OA) of 0.85 to 0.90. In Florida–West, areas infested with wild oat, canarygrass, and ryegrass were discriminated with OA from 0.85 to 0.89. In Florida–East, for the discrimination of the areas infested with wild oat patches, visible wavebands and several vegetation indices provided OA of 0.87 to 0.96. Estimated grass weed area ranged from 56 to 71%, 43 to 47%, and 69 to 80% of the field in the three locations, respectively, with per-class accuracies from 0.87 to 0.94. NDVI was the most efficient vegetation index, with a highly accurate performance in all locations. Our results suggest that mapping grass weed patches in wheat is feasible with high-resolution satellite imagery or aerial photography acquired 2 to 3 wk before crop senescence.


Author(s):  
S. Talebi ◽  
J. Shi ◽  
T. Zhao

This paper presents a theoretical study of derivation Microwave Vegetation Indices (MVIs) in different pairs of frequencies using two methods. In the first method calculating MVI in different frequencies based on Matrix Doubling Model (to take in to account multi scattering effects) has been done and analyzed in various soil properties. The second method was based on MVI theoretical basis and its independency to underlying soil surface signals. Comparing the results from two methods with vegetation properties (single scattering albedo and optical depth) indicated partial correlation between MVI from first method and optical depth, and full correlation between MVI from second method and vegetation properties. The second method to derive MVI can be used widely in global microwave vegetation monitoring.


2018 ◽  
Vol 10 (8) ◽  
pp. 1293 ◽  
Author(s):  
Yunpeng Luo ◽  
Tarek S. El-Madany ◽  
Gianluca Filippa ◽  
Xuanlong Ma ◽  
Bernhard Ahrens ◽  
...  

Tree–grass ecosystems are widely distributed. However, their phenology has not yet been fully characterized. The technique of repeated digital photographs for plant phenology monitoring (hereafter referred as PhenoCam) provide opportunities for long-term monitoring of plant phenology, and extracting phenological transition dates (PTDs, e.g., start of the growing season). Here, we aim to evaluate the utility of near-infrared-enabled PhenoCam for monitoring the phenology of structure (i.e., greenness) and physiology (i.e., gross primary productivity—GPP) at four tree–grass Mediterranean sites. We computed four vegetation indexes (VIs) from PhenoCams: (1) green chromatic coordinates (GCC), (2) normalized difference vegetation index (CamNDVI), (3) near-infrared reflectance of vegetation index (CamNIRv), and (4) ratio vegetation index (CamRVI). GPP is derived from eddy covariance flux tower measurement. Then, we extracted PTDs and their uncertainty from different VIs and GPP. The consistency between structural (VIs) and physiological (GPP) phenology was then evaluated. CamNIRv is best at representing the PTDs of GPP during the Green-up period, while CamNDVI is best during the Dry-down period. Moreover, CamNIRv outperforms the other VIs in tracking growing season length of GPP. In summary, the results show it is promising to track structural and physiology phenology of seasonally dry Mediterranean ecosystem using near-infrared-enabled PhenoCam. We suggest using multiple VIs to better represent the variation of GPP.


2018 ◽  
Vol 23 ◽  
pp. 00030 ◽  
Author(s):  
Anshu Rastogi ◽  
Subhajit Bandopadhyay ◽  
Marcin Stróżecki ◽  
Radosław Juszczak

The behaviour of nature depends on the different components of climates. Among these, temperature and rainfall are two of the most important components which are known to change plant productivity. Peatlands are among the most valuable ecosystems on the Earth, which is due to its high biodiversity, huge soil carbon storage, and its sensitivity to different environmental factors. With the rapid growth in industrialization, the climate change is becoming a big concern. Therefore, this work is focused on the behaviour of Sphagnum peatland in Poland, subjected to environment manipulation. Here it has been shown how a simple reflectance based technique can be used to assess the impact of climate change on peatland. The experimental setup consists of four plots with two kind of manipulations (control, warming, reduced precipitation, and a combination of warming and reduced precipitation). Reflectance data were measured twice in August 2017 under a clear sky. Vegetation indices (VIs) such as Normalized Difference Vegetation Index (NDVI), Photochemical Reflectance Index (PRI), near-infrared reflectance of vegetation (NIRv), MERIS terrestrial chlorophyll index (MTCI), Green chlorophyll index (CIgreen), Simple Ration (SR), and Water Band Index (WBI) were calculated to trace the impact of environmental manipulation on the plant community. Leaf Area Index of vascular plants was also measured for the purpose to correlate it with different VIs. The observation predicts that the global warming of 1°C may cause a significant change in peatland behaviour which can be tracked and monitored by simple remote sensing indices.


Plant Disease ◽  
2012 ◽  
Vol 96 (4) ◽  
pp. 497-505 ◽  
Author(s):  
Gregory J. Reynolds ◽  
Carol E. Windels ◽  
Ian V. MacRae ◽  
Soizik Laguette

Rhizoctonia crown and root rot (RCRR), caused by Rhizoctonia solani AG-2-2, is an increasingly important disease of sugar beet in Minnesota and North Dakota. Disease ratings are based on subjective, visual estimates of root rot severity (0-to-7 scale, where 0 = healthy and 7 = 100% rotted, foliage dead). Remote sensing was evaluated as an alternative method to assess RCRR. Field plots of sugar beet were inoculated with R. solani AG 2-2 IIIB at different inoculum densities at the 10-leaf stage in 2008 and 2009. Data were collected for (i) hyperspectral reflectance from the sugar beet canopy and (ii) visual ratings of RCRR in 2008 at 2, 4, 6, and 8 weeks after inoculation (WAI) and in 2009 at 2, 3, 5, and 9 WAI. Green, red, and near-infrared reflectance and several calculated narrowband and wideband vegetation indices (VIs) were correlated with visual RCRR ratings, and all resulted in strong nonlinear regressions. Values of VIs were constant until at least 26 to 50% of the root surface was rotted (RCRR = 4, wilting of foliage starting to develop) and then decreased significantly as RCRR ratings increased and plants began dying. RCRR also was detected using airborne, color-infrared imagery at 0.25- and 1-m resolution. Remote sensing can detect RCRR but not before initial appearance of foliar symptoms.


Sign in / Sign up

Export Citation Format

Share Document