scholarly journals Historic and Simulated Desert-Oasis Ecotone Changes in the Arid Tarim River Basin, China

2021 ◽  
Vol 13 (4) ◽  
pp. 647
Author(s):  
Fan Sun ◽  
Yi Wang ◽  
Yaning Chen ◽  
Yupeng Li ◽  
Qifei Zhang ◽  
...  

The desert-oasis ecotone, as a crucial natural barrier, maintains the stability of oasis agricultural production and protects oasis habitat security. This paper investigates the dynamic evolution of the desert-oasis ecotone in the Tarim River Basin and predicts the near-future land-use change in the desert-oasis ecotone using the cellular automata–Markov (CA-Markov) model. Results indicate that the overall area of the desert-oasis ecotone shows a shrinking trend (from 67,642 km2 in 1990 to 46,613 km2 in 2015) and the land-use change within the desert-oasis ecotone is mainly manifested by the conversion of a large amount of forest and grass area into arable land. The increasing demand for arable land for groundwater has led to a decline in the groundwater level, which is an important reason for the habitat deterioration in the desert-oasis ecotone. The rising temperature and drought have further exacerbated this trend. Assuming the current trend in development without intervention, the CA-Markov model predicts that by 2030, there will be an additional 1566 km2 of arable land and a reduction of 1151 km2 in forested area and grassland within the desert-oasis ecotone, which will inevitably further weaken the ecological barrier role of the desert-oasis ecotone and trigger a growing ecological crisis.

2021 ◽  
Vol 13 (18) ◽  
pp. 10263
Author(s):  
Yang Wang ◽  
Tingting Xia ◽  
Remina Shataer ◽  
Shuai Zhang ◽  
Zhi Li

Land-use and cover change is an important indicator for exploring global change trends, with in-depth research on land use and its driving factors being of particular significance in forging ecologically sustainable development. The present work used the Tarim River Basin as the study area, while the land-use transfer matrix, normalized difference vegetation index (NDVI), regional center-of-gravity model, and night-time-light remote-sensing mutual correction method were employed to explore temporal and spatial characteristics of land-use change and its driving factors. The results show the following. (1) From 1990 to 2018, land-use types in the study area significantly changed, with the cultivated land increasing by 73.9% and grassland area decreasing at a rate of 6.38 × 104 hm2 per year. (2) Areas with a natural vegetation NDVI above 0.2 appeared to follow a growth trend, with an area growth of 259.12 × 104 hm2 at a rate of 14.39 × 104 hm2/a. Average annual temperature and precipitation showed a fluctuating upward trend. (3) The center of gravity of land-use type area moved significantly. The center of gravity of cultivated land was moving in the same direction as the GDP and population center of gravity, migrating to the northeast. The migration distance of the center of gravity of cultivated land area was 212.59 km, the center of gravity migration rate of GDP was 14.44 km/a, and the population center of gravity was 812.21 km. (4) During the study period, the brightness of night lights in the study area was distributed in a circular shape, with more in the northwest and less in the southeast. Brightness gradually increased and showed an expansion trend, increasing from 0.3% to 6.3%. Among the influencing factors of spatial change of land-use change, natural factors such as climate change were related to the process of land-use/-cover change in the Tarim River Basin. Overall, human activities had the most obvious impact on land-use change.


2020 ◽  
Author(s):  
Jingjing Liu ◽  
Jing Wang ◽  
Ying Fang ◽  
Zehui Li

<p>The Yellow River basin, from west to east through different gradient terrains and climates, has huge spatial differences of land use and problematic eco‐environment. The understanding of relationship between land use change and agricultural production is crucial for coordinating the conflict between land development and environment protection in the Yellow River basin. In this study, the relationship between changes in arable land and urban land and changes in vegetation cover and agricultural production potential were quantitatively analyzed. Whether reclaimed land in the Yellow River basin can be converted to arable land and whether the occupation of urban land will cause ecosystem degradation were also discussed. The results indicated that: (1) Land use change in the Yellow River basin was greatly influenced by precipitation, which also affected the agricultural production potential and the Normalized Difference Vegetation Index (NDVI) in the Yellow River basin. The implementation of the Grain for Green program (GGP) had an effective restoration for vegetation cover and the resistance of soil erosion. Although the net area of arable land decreased by 71.6 ten thousand ha, the net production potential of arable land still increased by 1.7 ten thousand tons due to the inferior quality of the arable land for ecological restoration. (2) The concentrated distributed grassland and forest shrunk and the supply of ecosystem services and NDVI reduced, leading to ecological degraded in urban agglomeration regions where human activity was concentrated and construction land was increasing rapidly during the period of 2000–2015. The arable land was reduced by 43.3 ten thousand ha due to urban expansion, accounting for 59% of the total area of urban expansion, and consequently the agricultural production potential in the lower reaches was decreased. (3) Although it has not contributed significantly to agricultural production, the reclaimed land can be converted to arable land to a certain extent, due to its reasonable use for improving the ecological status of the Yellow River basin. 34.1 ten thousand ha of unused land and grassland were reclaimed for arable land under the Requisition‐Compensation Equilibrium of Farmland, which accounts for 1.27% of the total arable land. The increase of potential productivity brought by the reclamation of land for agricultural use only accounts for 0.56% of the total arable land potential productivity. However, compared with the whole Yellow River basin and the GGP region, the region with arable land reclaimed by low-coverage grassland and unused land leads to the highest increasing rate of the supply of ecosystem services and NDVI. The results could provide theoretical support and decision-making basis for further eco‐environment reconstruction, and promoting the reasonable land use and high-quality development in the Yellow River basin.</p>


2009 ◽  
Vol 19 (3) ◽  
pp. 340-350 ◽  
Author(s):  
Jin Zhao ◽  
Xi Chen ◽  
Anming Bao ◽  
Chao Zhang ◽  
Wanli Shi

2020 ◽  
Vol 12 (18) ◽  
pp. 7759
Author(s):  
Yang Wang ◽  
Shuai Zhang ◽  
Hui Zhen ◽  
Xueer Chang ◽  
Remina Shataer ◽  
...  

This paper explores the watershed land use and ecosystem services value (ESV) space-time evolution characteristics in the Tarim River Basin in China’s arid northwest. The study applies spatial correlation analysis using Landsat TM remote sensing images for 1990, 2000, 2010, and 2018. The land use data are extracted and the ESV coefficients are adjusted accordingly. The results show as follows: (1) From 1990 to 2018, land use in the Tarim River Basin changed significantly. Construction land, cultivated land, and water exhibited an increasing trend, while grassland, forest land, and water indicated a decreasing trend. Construction land increased the most, while water decreased the most. (2) Overall, ESV in the Tarim Basin charted a downward trend, from 872.884 billion RMB in 1990 to 767.165 billion RMB in 2018. From 2015 to 2018, the Basin’s ESV suffered the largest declines, with grassland ESV accounting for over 39% of the loss and adjustment services accounting for over 62%. (3) During the study period, the spatial distribution of ESV in the study area showed spatial distribution characterized that was either high in all directions or low in the middle, with significant positive spatial autocorrelation. The spatial distribution of ESV dynamic changes showed that ESV value-added regions were distributed in the southeast portion of the study area, while the ESV loss regions were distributed in the western and northern portions of the study area.


2013 ◽  
Vol 15 (4) ◽  
pp. 604
Author(s):  
Kelong TAN ◽  
Xiaofeng WANG ◽  
Huijun GAO ◽  
Weiming CHENG

Sign in / Sign up

Export Citation Format

Share Document