scholarly journals Crop Monitoring and Classification Using Polarimetric RADARSAT-2 Time-Series Data Across Growing Season: A Case Study in Southwestern Ontario, Canada

2021 ◽  
Vol 13 (7) ◽  
pp. 1394
Author(s):  
Qinghua Xie ◽  
Kunyu Lai ◽  
Jinfei Wang ◽  
Juan M. Lopez-Sanchez ◽  
Jiali Shang ◽  
...  

Multitemporal polarimetric synthetic aperture radar (PolSAR) has proven as a very effective technique in agricultural monitoring and crop classification. This study presents a comprehensive evaluation of crop monitoring and classification over an agricultural area in southwestern Ontario, Canada. The time-series RADARSAT-2 C-Band PolSAR images throughout the entire growing season were exploited. A set of 27 representative polarimetric observables categorized into ten groups was selected and analyzed in this research. First, responses and temporal evolutions of each of the polarimetric observables over different crop types were quantitatively analyzed. The results reveal that the backscattering coefficients in cross-pol and Pauli second channel, the backscattering ratio between HV and VV channels (HV/VV), the polarimetric decomposition outputs, the correlation coefficient between HH and VV channelρ ρHHVV, and the radar vegetation index (RVI) show the highest sensitivity to crop growth. Then, the capability of PolSAR time-series data of the same beam mode was also explored for crop classification using the Random Forest (RF) algorithm. The results using single groups of polarimetric observables show that polarimetric decompositions, backscattering coefficients in Pauli and linear polarimetric channels, and correlation coefficients produced the best classification accuracies, with overall accuracies (OAs) higher than 87%. A forward selection procedure to pursue optimal classification accuracy was expanded to different perspectives, enabling an optimal combination of polarimetric observables and/or multitemporal SAR images. The results of optimal classifications show that a few polarimetric observables or a few images on certain critical dates may produce better accuracies than the whole dataset. The best result was achieved using an optimal combination of eight groups of polarimetric observables and six SAR images, with an OA of 94.04%. This suggests that an optimal combination considering both perspectives may be valuable for crop classification, which could serve as a guideline and is transferable for future research.

2021 ◽  
Vol 13 (22) ◽  
pp. 4522
Author(s):  
Yupeng Kang ◽  
Xinli Hu ◽  
Qingyan Meng ◽  
Youfeng Zou ◽  
Linlin Zhang ◽  
...  

Time series of vegetation indices can be utilized to capture crop phenology information, and have been widely used in land cover and crop classification, phenological feature extraction, and planting structure monitoring. This is of great significance for guiding agricultural production and formulating agricultural policies. According to the characteristics of the GF-6 satellite’s newly-added red edge bands, wide field view and high-frequency imaging, the time series of vegetation indices about multi-temporal GF-6 WFV data are used for the study of land cover and crop classification. In this study, eight time steps of GF-6 WFV data were selected from March to October 2019 in Hengshui City. The normalized difference vegetation index (NDVI) time series and 10 different red edge spectral indices time series were constructed. Then, based on principal component analysis (PCA), using two feature selection and evaluation methods, stepwise discriminant analysis (SDA) and random forest (RF), the red edge vegetation index of normalized difference red edge (NDRE) was selected. Seven different lengths of NDVI, NDRE and NDVI&NDRE time series were reconstructed by the Savizky-Golay (S-G) smoothing algorithm. Finally, an RF classification algorithm was used to analyze the influence of time series length and red edge indices features on land cover and crop classification, and the planting structure and distribution of crops in the study area were obtained. The results show that: (1) Compared with the NDRE red edge time series, the NDVI time series is more conducive to the improvement of the overall classification accuracy of crops, and NDRE can assist NDVI in improving the crop classification accuracy; (2) With the shortening of NDVI and NDRE time series, the accuracy of crop classification is gradually decreased, and the decline is gradually accelerated; and (3) Through the combination of the NDVI and NDRE time series, the accuracy of crop classification with different time series lengths can be improved compared with the single NDVI time series, which is conducive to improving the classification accuracy and timeliness of crops. This study has fully tapped the application potential of the new red edge bands of GF-6 WFV time series data, which can provide references for crop identification and classification of time series data such as NDVI and red edge vegetation index of different lengths. At the same time, it promotes the application of optical satellite data with red edge bands in the field of agricultural remote sensing.


2020 ◽  
Vol 12 (4) ◽  
pp. 1313
Author(s):  
Leah M. Mungai ◽  
Joseph P. Messina ◽  
Sieglinde Snapp

This study aims to assess spatial patterns of Malawian agricultural productivity trends to elucidate the influence of weather and edaphic properties on Moderate Resolution Imaging Spectroradiometer (MODIS)-Normalized Difference Vegetation Index (NDVI) seasonal time series data over a decade (2006–2017). Spatially-located positive trends in the time series that can’t otherwise be accounted for are considered as evidence of farmer management and agricultural intensification. A second set of data provides further insights, using spatial distribution of farmer reported maize yield, inorganic and organic inputs use, and farmer reported soil quality information from the Malawi Integrated Household Survey (IHS3) and (IHS4), implemented between 2010–2011 and 2016–2017, respectively. Overall, remote-sensing identified areas of intensifying agriculture as not fully explained by biophysical drivers. Further, productivity trends for maize crop across Malawi show a decreasing trend over a decade (2006–2017). This is consistent with survey data, as national farmer reported yields showed low yields across Malawi, where 61% (2010–11) and 69% (2016–17) reported yields as being less than 1000 Kilograms/Hectare. Yields were markedly low in the southern region of Malawi, similar to remote sensing observations. Our generalized models provide contextual information for stakeholders on sustainability of productivity and can assist in targeting resources in needed areas. More in-depth research would improve detection of drivers of agricultural variability.


2019 ◽  
Vol 11 (24) ◽  
pp. 3023 ◽  
Author(s):  
Shuai Xie ◽  
Liangyun Liu ◽  
Xiao Zhang ◽  
Jiangning Yang ◽  
Xidong Chen ◽  
...  

The Google Earth Engine (GEE) has emerged as an essential cloud-based platform for land-cover classification as it provides massive amounts of multi-source satellite data and high-performance computation service. This paper proposed an automatic land-cover classification method using time-series Landsat data on the GEE cloud-based platform. The Moderate Resolution Imaging Spectroradiometer (MODIS) land-cover products (MCD12Q1.006) with the International Geosphere–Biosphere Program (IGBP) classification scheme were used to provide accurate training samples using the rules of pixel filtering and spectral filtering, which resulted in an overall accuracy (OA) of 99.2%. Two types of spectral–temporal features (percentile composited features and median composited monthly features) generated from all available Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+) data from the year 2010 ± 1 were used as input features to a Random Forest (RF) classifier for land-cover classification. The results showed that the monthly features outperformed the percentile features, giving an average OA of 80% against 77%. In addition, the monthly features composited using the median outperformed those composited using the maximum Normalized Difference Vegetation Index (NDVI) with an average OA of 80% against 78%. Therefore, the proposed method is able to generate accurate land-cover mapping automatically based on the GEE cloud-based platform, which is promising for regional and global land-cover mapping.


2019 ◽  
Vol 11 (7) ◽  
pp. 861 ◽  
Author(s):  
Hao Jiang ◽  
Dan Li ◽  
Wenlong Jing ◽  
Jianhui Xu ◽  
Jianxi Huang ◽  
...  

More than 90% of the sugar production in China comes from sugarcane, which is widely grown in South China. Optical image time series have proven to be efficient for sugarcane mapping. There are, however, two limitations associated with previous research: one is that the critical observations during the sugarcane growing season are limited due to frequent cloudy weather in South China; the other is that the classification method requires imagery time series covering the entire growing season, which reduces the time efficiency. The Sentinel-1A (S1A) synthetic aperture radar (SAR) data featuring relatively high spatial-temporal resolution provides an ideal data source for all-weather observations. In this study, we attempted to develop a method for the early season mapping of sugarcane. First, we proposed a framework consisting of two procedures: initial sugarcane mapping using the S1A SAR imagery time series, followed by non-vegetation removal using Sentinel-2 optical imagery. Second, we tested the framework using an incremental classification strategy based on S1A imagery covering the entire 2017–2018 sugarcane season. The study area was in Suixi and Leizhou counties of Zhanjiang city, China. Results indicated that an acceptable accuracy, in terms of Kappa coefficient, can be achieved to a level above 0.902 using time series three months before sugarcane harvest. In general, sugarcane mapping utilizing the combination of VH + VV as well as VH polarization alone outperformed mapping using VV alone. Although the XGBoost classifier with VH + VV polarization achieved a maximum accuracy that was slightly lower than the random forest (RF) classifier, the XGBoost shows promising performance in that it was more robust to overfitting with noisy VV time series and the computation speed was 7.7 times faster than RF classifier. The total sugarcane areas in Suixi and Leizhou for the 2017–2018 harvest year estimated by this study were approximately 598.95 km2 and 497.65 km2, respectively. The relative accuracy of the total sugarcane mapping area was approximately 86.3%.


2020 ◽  
Vol 12 (6) ◽  
pp. 990
Author(s):  
Raveerat Jaturapitpornchai ◽  
Poompat Rattanasuwan ◽  
Masashi Matsuoka ◽  
Ryosuke Nakamura

The limitations in obtaining sufficient datasets for training deep learning networks is preventing many applications from achieving accurate results, especially when detecting new constructions using time-series satellite imagery, since this requires at least two images of the same scene and it must contain new constructions in it. To tackle this problem, we introduce Chronological Order Reverse Network (CORN)—an architecture for detecting newly built constructions in time-series SAR images that does not require a large quantity of training data. The network uses two U-net adaptations to learn the changes between images from both Time 1–Time 2 and Time 2–Time 1 formats, which allows it to learn double the amount of changes in different perspectives. We trained the network with 2028 pairs of 256 × 256 pixel SAR images from ALOS-PALSAR, totaling 4056 pairs for the network to learn from, since it learns from both Time 1–Time 2 and Time 2–Time 1. As a result, the network can detect new constructions more accurately, especially at the building boundary, compared to the original U-net trained by the same amount of training data. The experiment also shows that the model trained with CORN can be used with images from Sentinel-1. The source code is available at https://github.com/Raveerat-titech/CORN.


2019 ◽  
Vol 11 (21) ◽  
pp. 2558 ◽  
Author(s):  
Emily Myers ◽  
John Kerekes ◽  
Craig Daughtry ◽  
Andrew Russ

Agricultural monitoring is an important application of earth-observing satellite systems. In particular, image time-series data are often fit to functions called shape models that are used to derive phenological transition dates or predict yield. This paper aimed to investigate the impact of imaging frequency on model fitting and estimation of corn phenological transition timing. Images (PlanetScope 4-band surface reflectance) and in situ measurements (Soil Plant Analysis Development (SPAD) and leaf area index (LAI)) were collected over a corn field in the mid-Atlantic during the 2018 growing season. Correlation was performed between candidate vegetation indices and SPAD and LAI measurements. The Normalized Difference Vegetation Index (NDVI) was chosen for shape model fitting based on the ground truth correlation and initial fitting results. Plot-average NDVI time-series were cleaned and fit to an asymmetric double sigmoid function, from which the day of year (DOY) of six different function parameters were extracted. These points were related to ground-measured phenological stages. New time-series were then created by removing images from the original time-series, so that average temporal spacing between images ranged from 3 to 24 days. Fitting was performed on the resampled time-series, and phenological transition dates were recalculated. Average range of estimated dates increased by 1 day and average absolute deviation between dates estimated from original and resampled time-series data increased by 1/3 of a day for every day of increase in average revisit interval. In the context of this study, higher imaging frequency led to greater precision in estimates of shape model fitting parameters used to estimate corn phenological transition timing.


2019 ◽  
Vol 11 (21) ◽  
pp. 2515 ◽  
Author(s):  
Ana Navarro ◽  
Joao Catalao ◽  
Joao Calvao

In Portugal, cork oak (Quercus suber L.) stands cover 737 Mha, being the most predominant species of the montado agroforestry system, contributing to the economic, social and environmental development of the country. Cork oak decline is a known problem since the late years of the 19th century that has recently worsened. The causes of oak decline seem to be a result of slow and cumulative processes, although the role of each environmental factor is not yet established. The availability of Sentinel-2 high spatial and temporal resolution dense time series enables monitoring of gradual processes. These processes can be monitored using spectral vegetation indices (VI) as their temporal dynamics are expected to be related with green biomass and photosynthetic efficiency. The Normalized Difference Vegetation Index (NDVI) is sensitive to structural canopy changes, however it tends to saturate at moderate-to-dense canopies. Modified VI have been proposed to incorporate the reflectance in the red-edge spectral region, which is highly sensitive to chlorophyll content while largely unaffected by structural properties. In this research, in situ data on the location and vitality status of cork oak trees are used to assess the correlation between chlorophyll indices (CI) and NDVI time series trends and cork oak vitality at the tree level. Preliminary results seem to be promising since differences between healthy and unhealthy (diseased/dead) trees were observed.


2011 ◽  
Vol 15 (3) ◽  
pp. 1047-1064 ◽  
Author(s):  
L. Jia ◽  
H. Shang ◽  
G. Hu ◽  
M. Menenti

Abstract. Liquid and solid precipitation is abundant in the high elevation, upper reach of the Heihe River basin in northwestern China. The development of modern irrigation schemes in the middle reach of the basin is taking up an increasing share of fresh water resources, endangering the oasis and traditional irrigation systems in the lower reach. In this study, the response of vegetation in the Ejina Oasis in the lower reach of the Heihe River to the water yield of the upper catchment was analyzed by time series analysis of monthly observations of precipitation in the upper and lower catchment, river streamflow downstream of the modern irrigation schemes and satellite observations of vegetation index. Firstly, remotely sensed NDVI data acquired by Terra-MODIS are used to monitor the vegetation dynamic for a seven years period between 2000 and 2006. Due to cloud-contamination, atmospheric influence and different solar and viewing angles, however, the quality and consistence of time series of remotely sensed NDVI data are degraded. A Fourier Transform method – the Harmonic Analysis of Time Series (HANTS) algorithm – is used to reconstruct cloud- and noise-free NDVI time series data from the Terra-MODIS NDVI dataset. Modification is made on HANTS by adding additional parameters to deal with large data gaps in yearly time series in combination with a Temporal-Similarity-Statistics (TSS) method developed in this study to seek for initial values for the large gap periods. Secondly, the same Fourier Transform method is used to model time series of the vegetation phenology. The reconstructed cloud-free NDVI time series data are used to study the relationship between the water availability (i.e. the local precipitation and upstream water yield) and the evolution of vegetation conditions in Ejina Oasis from 2000 to 2006. Anomalies in precipitation, streamflow, and vegetation index are detected by comparing each year with the average year. The results showed that: the previous year total runoff had a significant relationship with the vegetation growth in Ejina Oasis and that anomalies in the spring monthly runoff of the Heihe River influenced the phenology of vegetation in the entire oasis. Warmer climate expressed by the degree-days showed positive influence on the vegetation phenology in particular during drier years. The time of maximum green-up is uniform throughout the oasis during wetter years, but showed a clear S-N gradient (downstream) during drier years.


2014 ◽  
Vol 955-959 ◽  
pp. 863-868
Author(s):  
Rong Yu ◽  
Bo Feng Cai ◽  
Xiang Qin Su ◽  
Ya Zi He ◽  
Jing Yang

Vegetation index time series data modeling is widely used in many research areas, such as analysis of environmental change, estimation of crop yield, and the precision of the traditional vegetation index time series data fitting model is lower. This paper conducts the modeling with introducing the autoregressive moving average time series model, and using NOAA/AVHRR normalized differential vegetation index time series data, to estimate the errors of original data which are between under the situation that the parameters to be estimated are lesser, and on the basis gives the fitted equation to the six kinds of main land covers’ vegetation index time series data of Northeast China region.


Sign in / Sign up

Export Citation Format

Share Document