scholarly journals Semantic Image Segmentation Based Cable Vibration Frequency Visual Monitoring Using Modified Convolutional Neural Network with Pixel-wise Weighting Strategy

2021 ◽  
Vol 13 (8) ◽  
pp. 1466
Author(s):  
Han Yang ◽  
Hong-Cheng Xu ◽  
Shuang-Jian Jiao ◽  
Feng-De Yin

Attributed to the explosive adoption of large-span spatial structures and infrastructures as a critical damage-sensitive element, there is a pressing need to monitor cable vibration frequency to inspect the structural health. Neither existing acceleration sensor-utilized contact methods nor conventional computer vision-based photogrammetry methods have, to date, addressed the defects of lack in cost-effectiveness and compatibility with real-world situations. In this study, a state-of-the-art method based on modified convolutional neural network semantic image segmentation, which is compatible with extensively varying real-world backgrounds, is presented for cable vibration frequency remote and visual monitoring. Modifications of the underlying network framework lie in adopting simpler feature extractors and introducing class weights to loss function by pixel-wise weighting strategies. Nine convolutional neural networks were established and modified. Discrete images with varying real-world backgrounds were captured to train and validate network models. Continuous videos with different cable pixel-to-total pixel (C-T) ratios were captured to test the networks and derive vibration frequencies. Various metrics were leveraged to evaluate the effectiveness of network models. The optimal C-T ratio was also studied to provide guidelines for the parameter setting of monitoring systems in further research and practical application. Training and validation accuracies of nine networks were all reported higher than 90%. A network model with ResNet-50 as feature extractor and uniform prior weighting showed the most superior learning and generalization ability, of which the Precision reached 0.9973, F1 reached 0.9685, and intersection over union (IoU) reached 0.8226 when utilizing images with the optimal C-T ratio of 0.04 as testing set. Contrasted with that sampled by acceleration sensor, the first two order vibration frequencies derived by the most superior network from video with the optimal C-T ratio had merely ignorable absolute percentage errors of 0.41% and 0.36%, substantiating the effectiveness of the proposed method.

2021 ◽  
Vol 1074 (1) ◽  
pp. 012025
Author(s):  
A Poornima ◽  
M Shyamala Devi ◽  
M Sumithra ◽  
Mullaguri Venkata Bharath ◽  
Swathi ◽  
...  

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Peter M. Maloca ◽  
Philipp L. Müller ◽  
Aaron Y. Lee ◽  
Adnan Tufail ◽  
Konstantinos Balaskas ◽  
...  

AbstractMachine learning has greatly facilitated the analysis of medical data, while the internal operations usually remain intransparent. To better comprehend these opaque procedures, a convolutional neural network for optical coherence tomography image segmentation was enhanced with a Traceable Relevance Explainability (T-REX) technique. The proposed application was based on three components: ground truth generation by multiple graders, calculation of Hamming distances among graders and the machine learning algorithm, as well as a smart data visualization (‘neural recording’). An overall average variability of 1.75% between the human graders and the algorithm was found, slightly minor to 2.02% among human graders. The ambiguity in ground truth had noteworthy impact on machine learning results, which could be visualized. The convolutional neural network balanced between graders and allowed for modifiable predictions dependent on the compartment. Using the proposed T-REX setup, machine learning processes could be rendered more transparent and understandable, possibly leading to optimized applications.


2021 ◽  
Vol 7 (2) ◽  
pp. 37
Author(s):  
Isah Charles Saidu ◽  
Lehel Csató

We present a sample-efficient image segmentation method using active learning, we call it Active Bayesian UNet, or AB-UNet. This is a convolutional neural network using batch normalization and max-pool dropout. The Bayesian setup is achieved by exploiting the probabilistic extension of the dropout mechanism, leading to the possibility to use the uncertainty inherently present in the system. We set up our experiments on various medical image datasets and highlight that with a smaller annotation effort our AB-UNet leads to stable training and better generalization. Added to this, we can efficiently choose from an unlabelled dataset.


IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Wei Li ◽  
Yang Xiao ◽  
Xibin Song ◽  
Na Lv ◽  
Xinbo Jiang ◽  
...  

Author(s):  
Robert J. O’Shea ◽  
Amy Rose Sharkey ◽  
Gary J. R. Cook ◽  
Vicky Goh

Abstract Objectives To perform a systematic review of design and reporting of imaging studies applying convolutional neural network models for radiological cancer diagnosis. Methods A comprehensive search of PUBMED, EMBASE, MEDLINE and SCOPUS was performed for published studies applying convolutional neural network models to radiological cancer diagnosis from January 1, 2016, to August 1, 2020. Two independent reviewers measured compliance with the Checklist for Artificial Intelligence in Medical Imaging (CLAIM). Compliance was defined as the proportion of applicable CLAIM items satisfied. Results One hundred eighty-six of 655 screened studies were included. Many studies did not meet the criteria for current design and reporting guidelines. Twenty-seven percent of studies documented eligibility criteria for their data (50/186, 95% CI 21–34%), 31% reported demographics for their study population (58/186, 95% CI 25–39%) and 49% of studies assessed model performance on test data partitions (91/186, 95% CI 42–57%). Median CLAIM compliance was 0.40 (IQR 0.33–0.49). Compliance correlated positively with publication year (ρ = 0.15, p = .04) and journal H-index (ρ = 0.27, p < .001). Clinical journals demonstrated higher mean compliance than technical journals (0.44 vs. 0.37, p < .001). Conclusions Our findings highlight opportunities for improved design and reporting of convolutional neural network research for radiological cancer diagnosis. Key Points • Imaging studies applying convolutional neural networks (CNNs) for cancer diagnosis frequently omit key clinical information including eligibility criteria and population demographics. • Fewer than half of imaging studies assessed model performance on explicitly unobserved test data partitions. • Design and reporting standards have improved in CNN research for radiological cancer diagnosis, though many opportunities remain for further progress.


2021 ◽  
pp. 188-198

The innovations in advanced information technologies has led to rapid delivery and sharing of multimedia data like images and videos. The digital steganography offers ability to secure communication and imperative for internet. The image steganography is essential to preserve confidential information of security applications. The secret image is embedded within pixels. The embedding of secret message is done by applied with S-UNIWARD and WOW steganography. Hidden messages are reveled using steganalysis. The exploration of research interests focused on conventional fields and recent technological fields of steganalysis. This paper devises Convolutional neural network models for steganalysis. Convolutional neural network (CNN) is one of the most frequently used deep learning techniques. The Convolutional neural network is used to extract spatio-temporal information or features and classification. We have compared steganalysis outcome with AlexNet and SRNeT with same dataset. The stegnalytic error rates are compared with different payloads.


Sign in / Sign up

Export Citation Format

Share Document