scholarly journals Spatial Difference of Terrestrial Water Storage Change and Lake Water Storage Change in the Inner Tibetan Plateau

2021 ◽  
Vol 13 (10) ◽  
pp. 1984
Author(s):  
Baojin Qiao ◽  
Bingkang Nie ◽  
Changmao Liang ◽  
Longwei Xiang ◽  
Liping Zhu

Water resources are rich on the Tibetan Plateau, with large amounts of glaciers, lakes, and permafrost. Terrestrial water storage (TWS) on the Tibetan Plateau has experienced a significant change in recent decades. However, there is a lack of research about the spatial difference between TWSC and lake water storage change (LWSC), which is helpful to understand the response of water storage to climate change. In this study, we estimate the change in TWS, lake water storage (LWS), soil moisture, and permafrost, respectively, according to satellite and model data during 2005−2013 in the inner Tibetan Plateau and glacial meltwater from previous literature. The results indicate a sizeable spatial difference between TWSC and LWSC. LWSC was mainly concentrated in the northeastern part (18.71 ± 1.35 Gt, 37.7% of the total) and southeastern part (22.68 ± 1.63 Gt, 45.6% of the total), but the increased TWS was mainly in the northeastern region (region B, 18.96 ± 1.26 Gt, 57%). Based on mass balance, LWSC was the primary cause of TWSC for the entire inner Tibetan Plateau. However, the TWS of the southeastern part increased by 3.97 ± 2.5 Gt, but LWS had increased by 22.68 ± 1.63 Gt, and groundwater had lost 16.91 ± 7.26 Gt. The increased TWS in the northeastern region was equivalent to the increased LWS, and groundwater had increased by 4.47 ± 4.87 Gt. Still, LWS only increased by 2.89 ± 0.21 Gt in the central part, and the increase in groundwater was the primary cause of TWSC. These results suggest that the primary cause of increased TWS shows a sizeable spatial difference. According to the water balance, an increase in precipitation was the primary cause of lake expansion for the entire inner Tibetan Plateau, which contributed 73% (36.28 Gt) to lake expansion (49.69 ± 3.58 Gt), and both glacial meltwater and permafrost degradation was 13.5%.

2020 ◽  
Vol 12 (19) ◽  
pp. 3129
Author(s):  
Yao Jia ◽  
Huimin Lei ◽  
Hanbo Yang ◽  
Qingfang Hu

The Tibetan Plateau (TP) is referred to as the water tower of Asia, where water storage and precipitation have huge impacts on most major Asian rivers. Based on gravity recovery and climate experiment data, this study analyzed the terrestrial water storage (TWS) changes and estimated areal precipitation based on the water balance equation in four different basins, namely, the upper Yellow River (UYE), the upper Yangtze River (UYA), the Yarlung Zangbo River (YZ), and the Qiangtang Plateau (QT). The results show that the TWS change exhibits different patterns in the four basins and varies from −13 to 2 mm/year from 2003 to 2017. The estimated mean annual precipitation was 260 ± 19 mm/year (QT), 697 ± 26 mm/year (UYA), 541 ± 36 mm/year (UYE), and 1160 ± 39 mm/year (YZ) which performed better than other precipitation products in the TP. It indicates a potential method for estimating basin-scale precipitation through integrating basin average precipitation from the water balance equation in the poorly gauged and ungauged regions.


2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
Min Xu ◽  
Shichang Kang ◽  
Qiudong Zhao ◽  
Jiazhen Li

Changes in permafrost influence water balance exchanges in watersheds of cryosphere. Water storage change (WSC) is an important factor in water cycle. We used Gravity Recovery and Climate Experiment (GRACE) satellite data to retrieve WSC in the Three-River Source Region and subregions. WSC in four types of permafrost (continuous, seasonal, island, and patchy permafrost) was analyzed during 2003–2010. The result showed that WSC had significant change; it increased by9.06±0.01 mm/a (21.89±0.02×109 m3) over the Three-River Source Region during the study period. The most significant changes of WSC were in continuous permafrost zone, with a total amount of about13.94±0.48×109 m3. The spatial distribution of WSC was in state of gain in the continuous permafrost zone, whereas it was in a state of loss in the other permafrost zones. Little changes of precipitation and runoff occurred in study area, but the WSC increased significantly, according to water balance equation, the changes of runoff and water storage were subtracted from changes of precipitation, and the result showed that changes of evaporation is minus which means the evaporation decreased in the Three-River Source Region during 2003–2010.


Sign in / Sign up

Export Citation Format

Share Document