scholarly journals Perspectives on future sea ice and navigability in the Arctic

2021 ◽  
Author(s):  
Jinlei Chen ◽  
Shichang Kang ◽  
Wentao Du ◽  
Junming Guo ◽  
Min Xu ◽  
...  

Abstract. The retreat of sea ice is very significant in the Arctic under global warming. It is projected to continue and have great impacts on navigation. In this investigation, decadal changes in sea ice parameters were evaluated by multimodel from the Coupled Model Intercomparison Project Phase 6, and Arctic navigability was assessed under two shared socioeconomic pathways (SSPs) and two vessel classes within the Arctic transportation accessibility model. The sea ice extent is expected to decrease along the SSP5-8.5 scenario with a high possibility under current emissions and climate change. The decadal decreasing rate will increase in March but decrease in September until 2060 when the oldest ice completely disappears and sea ice changes reach an irreversible tipping point. The sea ice thickness will decrease and transit in parts of the Arctic and will decline overall by −0.22 m per decade after September 2060. Both the sea ice concentration and volume will thoroughly decline with decreasing decadal rates, while the decrease in volume will be higher in March than in September. Open water ships will be able to cross the Northeast Passage and Northwest Passage in August–October 2045–2055, with a maximum navigable area in September. The opportunistic crossing time for polar class 6 (PC6) ships will advance to October–December in 2021–2030, while the maximum navigable area will be seen in October. In addition, the Central Passage will also open for PC6 ships during September–October in 2021–2030.

2021 ◽  
Vol 15 (12) ◽  
pp. 5473-5482
Author(s):  
Jinlei Chen ◽  
Shichang Kang ◽  
Wentao Du ◽  
Junming Guo ◽  
Min Xu ◽  
...  

Abstract. The retreat of sea ice has been found to be very significant in the Arctic under global warming. It is projected to continue and will have great impacts on navigation. Perspectives on the changes in sea ice and navigability are crucial to the circulation pattern and future of the Arctic. In this investigation, the decadal changes in sea ice parameters were evaluated by the multi-model from the Coupled Model Inter-comparison Project Phase 6, and Arctic navigability was assessed under two shared socioeconomic pathways (SSPs) and two vessel classes with the Arctic transportation accessibility model. The sea ice extent shows a high possibility of decreasing along SSP5-8.5 under current emissions and climate change. The decadal rate of decreasing sea ice extent will increase in March but decrease in September until 2060, when the oldest ice will have completely disappeared and the sea ice will reach an irreversible tipping point. Sea ice thickness is expected to decrease and transit in certain parts, declining by −0.22 m per decade after September 2060. Both the sea ice concentration and volume will thoroughly decline at decreasing decadal rates, with a greater decrease in volume in March than in September. Open water ships will be able to cross the Northern Sea Route and Northwest Passage between August and October during the period from 2045 to 2055, with a maximum navigable percentage in September. The time for Polar Class 6 (PC6) ships will shift to October–December during the period from 2021 to 2030, with a maximum navigable percentage in October. In addition, the central passage will be open for PC6 ships between September and October during 2021–2030.


2021 ◽  
Vol 13 (6) ◽  
pp. 1139
Author(s):  
David Llaveria ◽  
Juan Francesc Munoz-Martin ◽  
Christoph Herbert ◽  
Miriam Pablos ◽  
Hyuk Park ◽  
...  

CubeSat-based Earth Observation missions have emerged in recent times, achieving scientifically valuable data at a moderate cost. FSSCat is a two 6U CubeSats mission, winner of the ESA S3 challenge and overall winner of the 2017 Copernicus Masters Competition, that was launched in September 2020. The first satellite, 3Cat-5/A, carries the FMPL-2 instrument, an L-band microwave radiometer and a GNSS-Reflectometer. This work presents a neural network approach for retrieving sea ice concentration and sea ice extent maps on the Arctic and the Antarctic oceans using FMPL-2 data. The results from the first months of operations are presented and analyzed, and the quality of the retrieved maps is assessed by comparing them with other existing sea ice concentration maps. As compared to OSI SAF products, the overall accuracy for the sea ice extent maps is greater than 97% using MWR data, and up to 99% when using combined GNSS-R and MWR data. In the case of Sea ice concentration, the absolute errors are lower than 5%, with MWR and lower than 3% combining it with the GNSS-R. The total extent area computed using this methodology is close, with 2.5% difference, to those computed by other well consolidated algorithms, such as OSI SAF or NSIDC. The approach presented for estimating sea ice extent and concentration maps is a cost-effective alternative, and using a constellation of CubeSats, it can be further improved.


2021 ◽  
Vol 13 (12) ◽  
pp. 2283
Author(s):  
Hyangsun Han ◽  
Sungjae Lee ◽  
Hyun-Cheol Kim ◽  
Miae Kim

The Arctic sea ice concentration (SIC) in summer is a key indicator of global climate change and important information for the development of a more economically valuable Northern Sea Route. Passive microwave (PM) sensors have provided information on the SIC since the 1970s by observing the brightness temperature (TB) of sea ice and open water. However, the SIC in the Arctic estimated by operational algorithms for PM observations is very inaccurate in summer because the TB values of sea ice and open water become similar due to atmospheric effects. In this study, we developed a summer SIC retrieval model for the Pacific Arctic Ocean using Advanced Microwave Scanning Radiometer 2 (AMSR2) observations and European Reanalysis Agency-5 (ERA-5) reanalysis fields based on Random Forest (RF) regression. SIC values computed from the ice/water maps generated from the Korean Multi-purpose Satellite-5 synthetic aperture radar images from July to September in 2015–2017 were used as a reference dataset. A total of 24 features including the TB values of AMSR2 channels, the ratios of TB values (the polarization ratio and the spectral gradient ratio (GR)), total columnar water vapor (TCWV), wind speed, air temperature at 2 m and 925 hPa, and the 30-day average of the air temperatures from the ERA-5 were used as the input variables for the RF model. The RF model showed greatly superior performance in retrieving summer SIC values in the Pacific Arctic Ocean to the Bootstrap (BT) and Arctic Radiation and Turbulence Interaction STudy (ARTIST) Sea Ice (ASI) algorithms under various atmospheric conditions. The root mean square error (RMSE) of the RF SIC values was 7.89% compared to the reference SIC values. The BT and ASI SIC values had three times greater values of RMSE (20.19% and 21.39%, respectively) than the RF SIC values. The air temperatures at 2 m and 925 hPa and their 30-day averages, which indicate the ice surface melting conditions, as well as the GR using the vertically polarized channels at 23 GHz and 18 GHz (GR(23V18V)), TCWV, and GR(36V18V), which accounts for atmospheric water content, were identified as the variables that contributed greatly to the RF model. These important variables allowed the RF model to retrieve unbiased and accurate SIC values by taking into account the changes in TB values of sea ice and open water caused by atmospheric effects.


2020 ◽  
Vol 14 (6) ◽  
pp. 1971-1984 ◽  
Author(s):  
Rebecca J. Rolph ◽  
Daniel L. Feltham ◽  
David Schröder

Abstract. Many studies have shown a decrease in Arctic sea ice extent. It does not logically follow, however, that the extent of the marginal ice zone (MIZ), here defined as the area of the ocean with ice concentrations from 15 % to 80 %, is also changing. Changes in the MIZ extent has implications for the level of atmospheric and ocean heat and gas exchange in the area of partially ice-covered ocean and for the extent of habitat for organisms that rely on the MIZ, from primary producers like sea ice algae to seals and birds. Here, we present, for the first time, an analysis of satellite observations of pan-Arctic averaged MIZ extent. We find no trend in the MIZ extent over the last 40 years from observations. Our results indicate that the constancy of the MIZ extent is the result of an observed increase in width of the MIZ being compensated for by a decrease in the perimeter of the MIZ as it moves further north. We present simulations from a coupled sea ice–ocean mixed layer model using a prognostic floe size distribution, which we find is consistent with, but poorly constrained by, existing satellite observations of pan-Arctic MIZ extent. We provide seasonal upper and lower bounds on MIZ extent based on the four satellite-derived sea ice concentration datasets used. We find a large and significant increase (>50 %) in the August and September MIZ fraction (MIZ extent divided by sea ice extent) for the Bootstrap and OSI-450 observational datasets, which can be attributed to the reduction in total sea ice extent. Given the results of this study, we suggest that references to “rapid changes” in the MIZ should remain cautious and provide a specific and clear definition of both the MIZ itself and also the property of the MIZ that is changing.


2012 ◽  
Vol 5 (2) ◽  
pp. 1627-1667 ◽  
Author(s):  
P. Mathiot ◽  
C. König Beatty ◽  
T. Fichefet ◽  
H. Goosse ◽  
F. Massonnet ◽  
...  

Abstract. Short-term and decadal sea-ice prediction systems need a realistic initial state, generally obtained using ice-ocean model simulations with data assimilation. However, only sea-ice concentration and velocity data are currently assimilated. In this work, an Ensemble Kalman Filter system is used to assimilate observed ice concentration and freeboard (i.e. thickness of emerged sea ice) data into a global coupled ocean–sea-ice model. The impact and effectiveness of our data assimilation system is assessed in two steps: firstly, through the assimilation of synthetic data (i.e., model-generated data) and, secondly, through the assimilation of satellite data. While ice concentrations are available daily, freeboard data used in this study are only available during six one-month periods spread over 2005–2007. Our results show that the simulated Arctic and Antarctic sea-ice extents are improved by the assimilation of synthetic ice concentration data. Assimilation of synthetic ice freeboard data improves the simulated sea-ice thickness field. Using real ice concentration data enhances the model realism in both hemispheres. Assimilation of ice concentration data significantly improves the total hemispheric sea-ice extent all year long, especially in summer. Combining the assimilation of ice freeboard and concentration data leads to better ice thickness, but does not further improve the ice extent. Moreover, the improvements in sea-ice thickness due to the assimilation of ice freeboard remain visible well beyond the assimilation periods.


2019 ◽  
Author(s):  
Timothy Williams ◽  
Anton Korosov ◽  
Pierre Rampal ◽  
Einar Ólason

Abstract. The neXtSIM-F forecast system consists of a stand-alone sea ice model, neXtSIM, forced by the TOPAZ ocean forecast and the ECMWF atmospheric forecast, combined with daily data assimilation. It was tested for the northern winter of 2018–2019 with different data being assimilated and was found to perform well. Despite drift not being assimilated in our system, we obtain quite good agreement between observations, comparing well to more sophisticated coupled ice-ocean forecast systems. The RMSE in drift speed is around 3 km/day for the first three days, climbing to about 4 km/day for the next day or two; computing the RMSE in the total drift adds about 1 km/day to the error in speed. The drift bias remains close to zero over the whole period from Nov 2018–Apr 2019. The neXtSIM-F forecast system assimilates OSISAF sea ice concentration products (both SSMI and AMSR2) and SMOS sea ice thickness by modifying the initial conditions daily and adding a compensating heat flux to prevent removed ice growing back too quickly. This greatly improved the agreement of these quantities with observations for the first 3–4 days of the forecast.


2021 ◽  
Vol 15 (7) ◽  
pp. 3207-3227
Author(s):  
Timothy Williams ◽  
Anton Korosov ◽  
Pierre Rampal ◽  
Einar Ólason

Abstract. The neXtSIM-F (neXtSIM forecast) forecasting system consists of a stand-alone sea ice model, neXtSIM (neXt-generation Sea Ice Model), forced by the TOPAZ ocean forecast and the ECMWF atmospheric forecast, combined with daily data assimilation of sea ice concentration. It uses the novel brittle Bingham–Maxwell (BBM) sea ice rheology, making it the first forecast based on a continuum model not to use the viscous–plastic (VP) rheology. It was tested in the Arctic for the time period November 2018–June 2020 and was found to perform well, although there are some shortcomings. Despite drift not being assimilated in our system, the sea ice drift is good throughout the year, being relatively unbiased, even for longer lead times like 5 d. The RMSE in speed and the total RMSE are also good for the first 3 or so days, although they both increase steadily with lead time. The thickness distribution is relatively good, although there are some regions that experience excessive thickening with negative implications for the summertime sea ice extent, particularly in the Greenland Sea. The neXtSIM-F forecasting system assimilates OSI SAF sea ice concentration products (both SSMIS and AMSR2) by modifying the initial conditions daily and adding a compensating heat flux to prevent removed ice growing back too quickly. The assimilation greatly improves the sea ice extent for the forecast duration.


2019 ◽  
Vol 13 (2) ◽  
pp. 491-509 ◽  
Author(s):  
Sindre Fritzner ◽  
Rune Graversen ◽  
Kai H. Christensen ◽  
Philip Rostosky ◽  
Keguang Wang

Abstract. The accuracy of the initial state is very important for the quality of a forecast, and data assimilation is crucial for obtaining the best-possible initial state. For many years, sea-ice concentration was the only parameter used for assimilation into numerical sea-ice models. Sea-ice concentration can easily be observed by satellites, and satellite observations provide a full Arctic coverage. During the last decade, an increasing number of sea-ice related variables have become available, which include sea-ice thickness and snow depth, which are both important parameters in the numerical sea-ice models. In the present study, a coupled ocean–sea-ice model is used to assess the assimilation impact of sea-ice thickness and snow depth on the model. The model system with the assimilation of these parameters is verified by comparison with a system assimilating only ice concentration and a system having no assimilation. The observations assimilated are sea ice concentration from the Ocean and Sea Ice Satellite Application Facility, thin sea ice from the European Space Agency's (ESA) Soil Moisture and Ocean Salinity mission, thick sea ice from ESA's CryoSat-2 satellite, and a new snow-depth product derived from the National Space Agency's Advanced Microwave Scanning Radiometer (AMSR-E/AMSR-2) satellites. The model results are verified by comparing assimilated observations and independent observations of ice concentration from AMSR-E/AMSR-2, and ice thickness and snow depth from the IceBridge campaign. It is found that the assimilation of ice thickness strongly improves ice concentration, ice thickness and snow depth, while the snow observations have a smaller but still positive short-term effect on snow depth and sea-ice concentration. In our study, the seasonal forecast showed that assimilating snow depth led to a less accurate long-term estimation of sea-ice extent compared to the other assimilation systems. The other three gave similar results. The improvements due to assimilation were found to last for at least 3–4 months, but possibly even longer.


2017 ◽  
Vol 30 (21) ◽  
pp. 8429-8446 ◽  
Author(s):  
Zhiqiang Chen ◽  
Jiping Liu ◽  
Mirong Song ◽  
Qinghua Yang ◽  
Shiming Xu

Here sea ice concentration derived from the Special Sensor Microwave Imager/Sounder and thickness derived from the Soil Moisture and Ocean Salinity and CryoSat-2 satellites are assimilated in the National Centers for Environmental Prediction Climate Forecast System using a localized error subspace transform ensemble Kalman filter (LESTKF). Three ensemble-based hindcasts are conducted to examine impacts of the assimilation on Arctic sea ice prediction, including CTL (without any assimilation), LESTKF-1 (with initial sea ice assimilation only), and LESTKF-E5 (with every 5-day sea ice assimilation). Assessment with the assimilated satellite products and independent sea ice thickness datasets shows that assimilating sea ice concentration and thickness leads to improved Arctic sea ice prediction. LESTKF-1 improves sea ice forecast initially. The initial improvement gradually diminishes after ~3-week integration for sea ice extent but remains quite steady through the integration for sea ice thickness. Large biases in both the ice extent and thickness in CTL are remarkably reduced through the hindcast in LESTKF-E5. Additional numerical experiments suggest that the hindcast with sea ice thickness assimilation dramatically reduces systematic bias in the predicted ice thickness compared with sea ice concentration assimilation only or without any assimilation, which also benefits the prediction of sea ice extent and concentration due to their covariability. Hence, the corrected state of sea ice thickness would aid in the forecast procedure. Increasing the number of ensemble members or extending the integration period to generate estimates of initial model states and uncertainties seems to have small impacts on sea ice prediction relative to LESTKF-E5.


2014 ◽  
Vol 27 (10) ◽  
pp. 3784-3801 ◽  
Author(s):  
Paul R. Holland ◽  
Nicolas Bruneau ◽  
Clare Enright ◽  
Martin Losch ◽  
Nathan T. Kurtz ◽  
...  

Abstract Unlike the rapid sea ice losses reported in the Arctic, satellite observations show an overall increase in Antarctic sea ice concentration over recent decades. However, observations of decadal trends in Antarctic ice thickness, and hence ice volume, do not currently exist. In this study a model of the Southern Ocean and its sea ice, forced by atmospheric reanalyses, is used to assess 1992–2010 trends in ice thickness and volume. The model successfully reproduces observations of mean ice concentration, thickness, and drift, and decadal trends in ice concentration and drift, imparting some confidence in the hindcasted trends in ice thickness. The model suggests that overall Antarctic sea ice volume has increased by approximately 30 km3 yr−1 (0.4% yr−1) as an equal result of areal expansion (20 × 103 km2 yr−1 or 0.2% yr−1) and thickening (1.5 mm yr−1 or 0.2% yr−1). This ice volume increase is an order of magnitude smaller than the Arctic decrease, and about half the size of the increased freshwater supply from the Antarctic Ice Sheet. Similarly to the observed ice concentration trends, the small overall increase in modeled ice volume is actually the residual of much larger opposing regional trends. Thickness changes near the ice edge follow observed concentration changes, with increasing concentration corresponding to increased thickness. Ice thickness increases are also found in the inner pack in the Amundsen and Weddell Seas, where the model suggests that observed ice-drift trends directed toward the coast have caused dynamical thickening in autumn and winter. Modeled changes are predominantly dynamic in origin in the Pacific sector and thermodynamic elsewhere.


Sign in / Sign up

Export Citation Format

Share Document