scholarly journals Modeling Influence of Soil Properties in Different Gradients of Soil Moisture: The Case of the Valencia Anchor Station Validation Site, Spain

2021 ◽  
Vol 13 (24) ◽  
pp. 5155
Author(s):  
Ester Carbó ◽  
Pablo Juan ◽  
Carlos Añó ◽  
Somnath Chaudhuri ◽  
Carlos Diaz-Avalos ◽  
...  

The prediction of spatial and temporal variation of soil water content brings numerous benefits in the studies of soil. However, it requires a considerable number of covariates to be included in the study, complicating the analysis. Integrated nested Laplace approximations (INLA) with stochastic partial differential equation (SPDE) methodology is a possible approach that allows the inclusion of covariates in an easy way. The current study has been conducted using INLA-SPDE to study soil moisture in the area of the Valencia Anchor Station (VAS), soil moisture validation site for the European Space Agency SMOS (Soil Moisture and Ocean Salinity). The data used were collected in a typical ecosystem of the semiarid Mediterranean conditions, subdivided into physio-hydrological units (SMOS units) which presents a certain degree of internal uniformity with respect to hydrological parameters and capture the spatial and temporal variation of soil moisture at the local fine scale. The paper advances the knowledge of the influence of hydrodynamic properties on VAS soil moisture (texture, porosity/bulk density and soil organic matter and land use). With the goal of understanding the factors that affect the variability of soil moisture in the SMOS pixel (50 km × 50 km), five states of soil moisture are proposed. We observed that the model with all covariates and spatial effect has the lowest DIC value. In addition, the correlation coefficient was close to 1 for the relationship between observed and predicted values. The methodology applied presents the possibility to analyze the significance of different covariates having spatial and temporal effects. This process is substantially faster and more effective than traditional kriging. The findings of this study demonstrate an advancement in that framework, demonstrating that it is faster than previous methodologies, provides significance of individual covariates, is reproducible, and is easy to compare with models.

2020 ◽  
Vol 12 (22) ◽  
pp. 3737
Author(s):  
Nicola Paciolla ◽  
Chiara Corbari ◽  
Ahmad Al Bitar ◽  
Yann Kerr ◽  
Marco Mancini

Numerous Surface Soil Moisture (SSM) products are available from remote sensing, encompassing different spatial, temporal, and radiometric resolutions and retrieval techniques. Notwithstanding this variety, all products should be coherent with water inputs. In this work, we have cross-compared precipitation and irrigation with different SSM products: Soil Moisture Ocean Salinity (SMOS), Soil Moisture Active Passive (SMAP), European Space Agency (ESA) Climate Change Initiative (ESA-CCI) products, Copernicus SSM1km, and Advanced Microwave Scanning Radiometer 2 (AMSR2). The products have been analyzed over two agricultural sites in Italy (Chiese and Capitanata Irrigation Consortia). A Hydrological Consistency Index (HCI) is proposed as a means to measure the coherency between SSM and precipitation/irrigation. Any time SSM is available, a positive or negative consistency is recorded, according to the rainfall registered since the previous measurement and the increase/decrease of SSM. During the irrigation season, some agreements are labeled as “irrigation-driven”. No SSM dataset stands out for a systematic hydrological coherence with the rainfall. Negative consistencies cluster just below 50% in the non-irrigation period and lose 20–30% in the irrigation period. Hybrid datasets perform better (+15–20%) than single-technology measurements, among which active data provide slightly better results (+5–10%) than passive data.


2015 ◽  
pp. 55
Author(s):  
R. Fernandez Moran ◽  
J. P. Wigneron ◽  
E. Lopez-Baeza ◽  
M. Miernecki ◽  
P. Salgado-Hernanz ◽  
...  

La misión de SMOS (Soil Moisture and Ocean Salinity) se lanzó el 2 de Noviembre de 2009 con el objetivo de proporcionar datos de humedad del suelo y salinidad del mar. La principal actividad de la conocida como Valencia Anchor Station (VAS) es asistir en la validación a largo plazo de productos de suelo de SMOS. El presente estudio se centra en una validación de datos de nivel 3 de SMOS en la VAS con medidas in situ tomadas en el periodo 2010-2012. El radiómetro Elbara-II está situado dentro de los confines de la VAS, observando un campo de viñedos que se considera representativo de una gran proporción de un área de 50×50 km, suficiente para cubrir un footprint de SMOS. Las temperaturas de brillo (TB) adquiridas por ELBARA-II se compararon con las observadas por SMOS en las mismas fechas y horas. También se utilizó la inversión del modelo L-MEB con el fin de obtener humedades de suelo (SM) que, posteriormente, se compararon con datos de nivel 3 de SMOS. Se ha encontrado una buena correlación entre ambas series de TB, con mejoras año tras año, achacable fundamentalmente a la disminución de precipitaciones en el periodo objeto de estudio y a la mitigación de las interferencias por radiofrecuencia en banda L. La mayor homogeneidad del footprint del radiómetro ELBARA-II frente al de SMOS explica la mayor variabilidad de sus TB. Los periodos de precipitación más intensa (primavera y otoño) también son de mayor SM, lo que corrobora la consistencia de los resultados de SM simulados a través de las observaciones del radiómetro. Sin embargo, se debe resaltar una subestimación por parte de SMOS de los valores de SM respecto a los obtenidos por ELBARA-II, presumiblemente debido a la influencia que la pequeña fracción de suelo no destinado al cultivo de la vid tiene sobre SMOS. Las estimaciones por parte de SMOS en órbita descendente (6 p.m.) resultaron de mayor calidad (mayor correlación y menores RMSE y bias) que en órbita ascendente (6 a.m., momento de mayor humedad de suelo).


2011 ◽  
Vol 340 (1-2) ◽  
pp. 73-88 ◽  
Author(s):  
Katrin Schneider ◽  
Ulrich Leopold ◽  
Friederike Gerschlauer ◽  
Frauke Barthold ◽  
Marcus Giese ◽  
...  

2019 ◽  
Vol 11 (9) ◽  
pp. 1113 ◽  
Author(s):  
Franklin Paredes-Trejo ◽  
Humberto Barbosa ◽  
Carlos A. C. dos Santos

Microwave-based satellite soil moisture products enable an innovative way of estimating rainfall using soil moisture observations with a bottom-up approach based on the inversion of the soil water balance Equation (SM2RAIN). In this work, the SM2RAIN-CCI (SM2RAIN-ASCAT) rainfall data obtained from the inversion of the microwave-based satellite soil moisture (SM) observations derived from the European Space Agency (ESA) Climate Change Initiative (CCI) (from the Advanced SCATterometer (ASCAT) soil moisture data) were evaluated against in situ rainfall observations under different bioclimatic conditions in Brazil. The research V7 version of the Tropical Rainfall Measurement Mission Multi-satellite Precipitation Analysis (TRMM TMPA) was also used as a state-of-the-art rainfall product with an up-bottom approach. Comparisons were made at daily and 0.25° scales, during the time-span of 2007–2015. The SM2RAIN-CCI, SM2RAIN-ASCAT, and TRMM TMPA products showed relatively good Pearson correlation values (R) with the gauge-based observations, mainly in the Caatinga (CAAT) and Cerrado (CER) biomes (R median > 0.55). SM2RAIN-ASCAT largely underestimated rainfall across the country, particularly over the CAAT and CER biomes (bias median < −16.05%), while SM2RAIN-CCI is characterized by providing rainfall estimates with only a slight bias (bias median: −0.20%), and TRMM TMPA tended to overestimate the amount of rainfall (bias median: 7.82%). All products exhibited the highest values of unbiased root mean square error (ubRMSE) in winter (DJF) when heavy rainfall events tend to occur more frequently, whereas the lowest values are observed in summer (JJA) with light rainfall events. The SM2RAIN-based products showed larger contribution of systematic error components than random error components, while the opposite was observed for TRMM TMPA. In general, both SM2RAIN-based rainfall products can be effectively used for some operational purposes on a daily scale, such as water resources management and agriculture, whether the bias is previously adjusted.


2020 ◽  
Author(s):  
Yaokui Cui ◽  
Chao Zeng ◽  
Jie Zhou ◽  
Xi Chen

&lt;p&gt;&lt;strong&gt;Abstract&lt;/strong&gt;:&lt;/p&gt;&lt;p&gt;Surface soil moisture plays an important role in the exchange of water and energy between the land surface and the atmosphere, and critical to climate change study. The Tibetan Plateau (TP), known as &amp;#8220;The third pole of the world&amp;#8221; and &amp;#8220;Asia&amp;#8217;s water towers&amp;#8221;, exerts huge influences on and sensitive to global climates. Long time series of and spatio-temporal continuum soil moisture is helpful to understand the role of TP in this situation. In this study, a dataset of 14-year (2002&amp;#8211;2015) Spatio-temporal continuum remotely sensed soil moisture of the TP at 0.25&amp;#176; resolution is obtained, combining MODIS optical products and ESA (European Space Agency) ECV (Essential Climate Variable) combined soil moisture products based on General Regression Neural Network (GRNN). The validation of the dataset shows that the soil moisture is well reconstructed with R&lt;sup&gt;2&lt;/sup&gt; larger than 0.65, and RMSE less than 0.08 cm&lt;sup&gt;3&lt;/sup&gt; cm&lt;sup&gt;-3&lt;/sup&gt; and Bias less than 0.07 cm&lt;sup&gt;3&lt;/sup&gt; cm&lt;sup&gt;-3 &lt;/sup&gt;at 0.25&amp;#176; and 1&amp;#176; spatial scale, compared with the in-situ measurements in the central of TP. And then, spatial&amp;#160;and&amp;#160;temporal&amp;#160;characteristics and trend of SM over TP were analyzed based on this dataset.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Keywords: &lt;/strong&gt;Soil moisture; Remote Sensing; Dataset; GRNN; ECV; Tibetan Plateau&lt;/p&gt;


Author(s):  
Katarzyna Dabrowska-Zielinska ◽  
Jan Musial ◽  
Alicja Malinska ◽  
Maria Budzynska ◽  
Radoslaw Gurdak ◽  
...  

Soil moisture (SM) plays an essential role in environmental studies related to wetlands, an ecosystem sensitive to climate change. Hence, there is the need for its constant monitoring. SAR (Synthetic Aperture Radar) satellite imagery is the only mean to fulfill this objective regardless of the weather. The objective of the study was to develop the methodology for SM retrieval under wetland vegetation using Sentinel-1 (S-1) satellite data. The study was carried out during the years 2015&ndash;2017 in the Biebrza Wetlands, situated in northeastern Poland. At the Biebrza Wetlands, two Sentinel-1 validation sites were established, covering grassland and marshland biomes, where a network of 18 stations for soil moisture measurement was deployed. The sites were funded by the European Space Agency (ESA), and the collected measurements are available through the International Soil Moisture Network (ISMN). The NDVI (Normalized Difference Vegetation Index) was derived from the optical imagery of a MODIS (Moderate Resolution Imaging Spectroradiometer) sensor onboard the Terra satellite. The SAR data of the Sentinel-1 satellite with VH (vertical transmit and horizontal receive) and VV (vertical transmit and vertical receive) polarization were applied to soil moisture retrieval for a broad range of NDVI values and soil moisture conditions. The new methodology is based on research into the effect of vegetation on backscatter () changes under different soil moisture and vegetation (NDVI) conditions. It was found that the state of the vegetation may be described by the difference between  VH and  VV, or the ratio of  VV/VH, as calculated from the Sentinel-1 images. The most significant correlation coefficient for soil moisture was found for data that was acquired from the ascending tracks of the Sentinel-1 satellite, characterized by the lowest incidence angle, and SM at a depth of 5 cm. The study demonstrated that the use of the inversion approach, which was applied to the new developed models and includes the derived indices based on S-1, allowed the estimation of SM for peatlands with reasonable accuracy (RMSE ~ 10 vol. %). Due to the temporal frequency of the two S-1 satellites&rsquo; (S-1A and S-1B) acquisitions, it is possible to monitor SM changes every six days. The conclusion drawn from the study emphasizes a demand for the derivation of specific soil moisture retrieval algorithms that are suited for wetland ecosystems, where soil moisture is several times higher than in agricultural areas.


2021 ◽  
Author(s):  
Wouter Dorigo ◽  
Irene Himmelbauer ◽  
Daniel Aberer ◽  
Lukas Schremmer ◽  
Ivana Petrakovic ◽  
...  

Abstract. In 2009, the International Soil Moisture Network (ISMN) was initiated as a community effort, funded by the European Space Agency, to serve as a centralised data hosting facility for globally available in situ soil moisture measurements (Dorigo et al., 2011a, b). The ISMN brings together in situ soil moisture measurements collected and freely shared by a multitude of organisations, harmonizes them in terms of units and sampling rates, applies advanced quality control, and stores them in a database. Users can freely retrieve the data from this database through an online web portal (https://ismn.earth). Meanwhile, the ISMN has evolved into the primary in situ soil moisture reference database worldwide, as evidenced by more than 3000 active users and over 1000 scientific publications referencing the data sets provided by the network. As of December 2020, the ISMN now contains data of 65 networks and 2678 stations located all over the globe, with a time period spanning from 1952 to present.The number of networks and stations covered by the ISMN is still growing and many of the data sets contained in the database continue to be updated. The main scope of this paper is to inform readers about the evolution of the ISMN over the past decade,including a description of network and data set updates and quality control procedures. A comprehensive review of existing literature making use of ISMN data is also provided in order to identify current limitations in functionality and data usage, and to shape priorities for the next decade of operations of this unique community-based data repository.


Sensors ◽  
2019 ◽  
Vol 19 (8) ◽  
pp. 1900
Author(s):  
Cong Yin ◽  
Ernesto Lopez-Baeza ◽  
Manuel Martin-Neira ◽  
Roberto Fernandez-Moran ◽  
Lei Yang ◽  
...  

In this paper, the SOMOSTA (Soil Moisture Monitoring Station) experiment on the intercomparison of soil moisture monitoring from Global Navigation Satellite System Reflectometry (GNSS-R) signals and passive L-band microwave radiometer observations at the Valencia Anchor Station is introduced. The GNSS-R instrument has an up-looking antenna for receiving direct signals from satellites, and a dual-pol down-looking antenna for receiving LHCP (left-hand circular polarization) and RHCP (right-hand circular polarization) reflected signals from the soil surface. Data were collected from the three different antennas through the two channels of Oceanpal GNSS-R receiver and, in addition, calibration was performed to reduce the impact from the differing channels. Reflectivity was thus measured, and soil moisture could be retrieved. The ESA (European Space Agency)-funded ELBARA-II (ESA L Band Radiometer II) is an L-band radiometer with two channels with 11 MHz bandwidth and respective center frequencies of 1407.5 MHz and 1419.5 MHz. The ELBARAII antenna is a large dual-mode Picket horn that is 1.4 m wide, with a length of 2.7 m with −3 dB full beam width of 12° (±6° around the antenna main direction) and a gain of 23.5 dB. By comparing GNSS-R and ELBARA-II radiometer data, a high correlation was found between the LHCP reflectivity measured by GNSS-R and the horizontal/vertical reflectivity from the radiometer (with correlation coefficients ranging from 0.83 to 0.91). Neural net fitting was used for GNSS-R soil moisture inversion, and the RMSE (Root Mean Square Error) was 0.014 m3/m3. The determination coefficient between the retrieved soil moisture and in situ measurements was R2 = 0.90 for Oceanpal and R2 = 0.65 for Elbara II, and the ubRMSE (Unbiased RMSE) were 0.0128 and 0.0734 respectively. The soil moisture retrievals by both L-band remote sensing methods show good agreement with each other, and their mutual correspondence with in-situ measurements and with rainfall was also good.


Sign in / Sign up

Export Citation Format

Share Document