scholarly journals Towards a long-term dataset of ELBARA-II measurements assisting SMOS level-3 land product and algorithm validation at the Valencia Anchor Station

2015 ◽  
pp. 55
Author(s):  
R. Fernandez Moran ◽  
J. P. Wigneron ◽  
E. Lopez-Baeza ◽  
M. Miernecki ◽  
P. Salgado-Hernanz ◽  
...  

La misión de SMOS (Soil Moisture and Ocean Salinity) se lanzó el 2 de Noviembre de 2009 con el objetivo de proporcionar datos de humedad del suelo y salinidad del mar. La principal actividad de la conocida como Valencia Anchor Station (VAS) es asistir en la validación a largo plazo de productos de suelo de SMOS. El presente estudio se centra en una validación de datos de nivel 3 de SMOS en la VAS con medidas in situ tomadas en el periodo 2010-2012. El radiómetro Elbara-II está situado dentro de los confines de la VAS, observando un campo de viñedos que se considera representativo de una gran proporción de un área de 50×50 km, suficiente para cubrir un footprint de SMOS. Las temperaturas de brillo (TB) adquiridas por ELBARA-II se compararon con las observadas por SMOS en las mismas fechas y horas. También se utilizó la inversión del modelo L-MEB con el fin de obtener humedades de suelo (SM) que, posteriormente, se compararon con datos de nivel 3 de SMOS. Se ha encontrado una buena correlación entre ambas series de TB, con mejoras año tras año, achacable fundamentalmente a la disminución de precipitaciones en el periodo objeto de estudio y a la mitigación de las interferencias por radiofrecuencia en banda L. La mayor homogeneidad del footprint del radiómetro ELBARA-II frente al de SMOS explica la mayor variabilidad de sus TB. Los periodos de precipitación más intensa (primavera y otoño) también son de mayor SM, lo que corrobora la consistencia de los resultados de SM simulados a través de las observaciones del radiómetro. Sin embargo, se debe resaltar una subestimación por parte de SMOS de los valores de SM respecto a los obtenidos por ELBARA-II, presumiblemente debido a la influencia que la pequeña fracción de suelo no destinado al cultivo de la vid tiene sobre SMOS. Las estimaciones por parte de SMOS en órbita descendente (6 p.m.) resultaron de mayor calidad (mayor correlación y menores RMSE y bias) que en órbita ascendente (6 a.m., momento de mayor humedad de suelo).

2020 ◽  
Author(s):  
Sisi Qin

<p>In this study, Sea Surface Salinity (SSS) Level 3 (L3) daily product derived from Soil Moisture Active Passive (SMAP) during the year 2016, was validated and compared with SSS daily products derived from Soil Moisture and Ocean Salinity (SMOS) and in-situ measurements. Generally, the Root Mean Square Error (RMSE) of the daily SSS products is larger along the coastal areas and at high latitudes and is smaller in the tropical regions and open oceans. Comparisons between the two types of daily satellite SSS product revealed that the RMSE was higher in the daily SMOS product than in the SMAP, whereas the bias of the daily SMOS was observed to be less than that of the SMAP when compared with Argo floats data. In addition, the latitude-dependent bias and RMSE of the SMAP SSS were found to be primarily influenced by the precipitation and the Sea Surface Temperature (SST).Then, aregression analysis method which has adopted the precipitation and SST data was used to correct the larger bias of the daily SMAP product. It was confirmed that the corrected daily SMAP product could be used for assimilation in high-resolution forecast models, due to the fact that it was demonstrated to be unbiased and much closer to the in-situ measurements than the original uncorrected SMAP product.</p>


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Sungmin O. ◽  
Rene Orth

AbstractWhile soil moisture information is essential for a wide range of hydrologic and climate applications, spatially-continuous soil moisture data is only available from satellite observations or model simulations. Here we present a global, long-term dataset of soil moisture derived through machine learning trained with in-situ measurements, SoMo.ml. We train a Long Short-Term Memory (LSTM) model to extrapolate daily soil moisture dynamics in space and in time, based on in-situ data collected from more than 1,000 stations across the globe. SoMo.ml provides multi-layer soil moisture data (0–10 cm, 10–30 cm, and 30–50 cm) at 0.25° spatial and daily temporal resolution over the period 2000–2019. The performance of the resulting dataset is evaluated through cross validation and inter-comparison with existing soil moisture datasets. SoMo.ml performs especially well in terms of temporal dynamics, making it particularly useful for applications requiring time-varying soil moisture, such as anomaly detection and memory analyses. SoMo.ml complements the existing suite of modelled and satellite-based datasets given its distinct derivation, to support large-scale hydrological, meteorological, and ecological analyses.


2021 ◽  
Vol 13 (14) ◽  
pp. 2848
Author(s):  
Hao Sun ◽  
Qian Xu

Obtaining large-scale, long-term, and spatial continuous soil moisture (SM) data is crucial for climate change, hydrology, and water resource management, etc. ESA CCI SM is such a large-scale and long-term SM (longer than 40 years until now). However, there exist data gaps, especially for the area of China, due to the limitations in remote sensing of SM such as complex topography, human-induced radio frequency interference (RFI), and vegetation disturbances, etc. The data gaps make the CCI SM data cannot achieve spatial continuity, which entails the study of gap-filling methods. In order to develop suitable methods to fill the gaps of CCI SM in the whole area of China, we compared typical Machine Learning (ML) methods, including Random Forest method (RF), Feedforward Neural Network method (FNN), and Generalized Linear Model (GLM) with a geostatistical method, i.e., Ordinary Kriging (OK) in this study. More than 30 years of passive–active combined CCI SM from 1982 to 2018 and other biophysical variables such as Normalized Difference Vegetation Index (NDVI), precipitation, air temperature, Digital Elevation Model (DEM), soil type, and in situ SM from International Soil Moisture Network (ISMN) were utilized in this study. Results indicated that: 1) the data gap of CCI SM is frequent in China, which is found not only in cold seasons and areas but also in warm seasons and areas. The ratio of gap pixel numbers to the whole pixel numbers can be greater than 80%, and its average is around 40%. 2) ML methods can fill the gaps of CCI SM all up. Among the ML methods, RF had the best performance in fitting the relationship between CCI SM and biophysical variables. 3) Over simulated gap areas, RF had a comparable performance with OK, and they outperformed the FNN and GLM methods greatly. 4) Over in situ SM networks, RF achieved better performance than the OK method. 5) We also explored various strategies for gap-filling CCI SM. Results demonstrated that the strategy of constructing a monthly model with one RF for simulating monthly average SM and another RF for simulating monthly SM disturbance achieved the best performance. Such strategy combining with the ML method such as the RF is suggested in this study for filling the gaps of CCI SM in China.


2018 ◽  
Vol 10 (9) ◽  
pp. 1351 ◽  
Author(s):  
Hongzhang Xu ◽  
Qiangqiang Yuan ◽  
Tongwen Li ◽  
Huanfeng Shen ◽  
Liangpei Zhang ◽  
...  

Soil moisture is a key component of the water cycle budget. Sensing soil moisture using microwave sensors onboard satellites is an effective way to retrieve surface soil moisture (SSM) at a global scale, but the retrieval accuracy in some regions is inadequate due to the complicated factors influencing the general retrieval process. On the other hand, monitoring soil moisture directly through in-situ devices is capable of providing high-accuracy SSM measurements, but the distribution of such stations is sparse. Recently, the Global Navigation Satellite System interferometric Reflectometry (GNSS-R) method was used to derive field-scale SSM, which can serve as a supplement to contemporary sparse in-situ soil moisture networks. On this basis, it is of great research significance to explore the fusion of these different kinds of SSM data, so as to improve the present satellite SSM products with regard to their data accuracy. In this paper, a multi-source point-surface fusion method based on the generalized regression neural network (GRNN) model is applied to fuse the Soil Moisture Active Passive (SMAP) Level 3 radiometer SSM daily product with in-situ measured and GNSS-R estimated SSM data from five soil moisture networks in the western continental U.S. The results show that the GRNN model obtains a fairly good performance, with a cross-validation R value of approximately 0.9 and a ubRMSE of 0.044 cm3 cm−3. Furthermore, the fused SSM product agrees well with the site-specific SSM data in terms of time and space, which demonstrates that the proposed GRNN model is able to construct the non-linear relationship between the point- and surface-scale SSM.


2009 ◽  
Vol 13 (2) ◽  
pp. 115-124 ◽  
Author(s):  
C. Albergel ◽  
C. Rüdiger ◽  
D. Carrer ◽  
J.-C. Calvet ◽  
N. Fritz ◽  
...  

Abstract. A long term data acquisition effort of profile soil moisture is currently underway at 13 automatic weather stations located in Southwestern France. In this study, the soil moisture measured in-situ at 5 cm is used to evaluate the normalised surface soil moisture (SSM) estimates derived from coarse-resolution (25 km) active microwave data of the ASCAT scatterometer instrument (onboard METOP), issued by EUMETSAT for a period of 6 months (April–September) in 2007. The seasonal trend is removed from the satellite and in-situ time series by considering scaled anomalies. One station (Mouthoumet) of the ground network, located in a mountainous area, is removed from the analysis as very few ASCAT SSM estimates are available. No correlation is found for the station of Narbonne, which is close to the Mediterranean sea. On the other hand, nine stations present significant correlation levels. For two stations, a significant correlation is obtained when considering only part of the ASCAT data. The soil moisture measured in-situ at those stations, at 30 cm, is used to estimate the characteristic time length (T) of an exponential filter applied to the ASCAT product. The best correlation between a soil water index derived from ASCAT and the in-situ soil moisture observations at 30 cm is obtained with a T-value of 14 days.


2013 ◽  
Vol 14 (3) ◽  
pp. 888-905 ◽  
Author(s):  
Rebecca A. Smith ◽  
Christian D. Kummerow

Abstract Using in situ, reanalysis, and satellite-derived datasets, surface and atmospheric water budgets of the Upper Colorado River basin are analyzed. All datasets capture the seasonal cycle for each water budget component. For precipitation, all products capture the interannual variability, though reanalyses tend to overestimate in situ while satellite-derived precipitation underestimates. Most products capture the interannual variability of evapotranspiration (ET), though magnitudes differ among the products. Variability and magnitude among storage volume change products widely vary. With regards to the surface water budget, the strongest connections exist among precipitation, ET, and soil moisture, while snow water equivalent (SWE) is best correlated with runoff. Using in situ precipitation estimates, the Max Planck Institute (MPI) ET estimates, and accumulated runoff, changes in storage are calculated and compare well with estimated changes in storage calculated using SWE, reservoir, and the Climate Prediction Center’s soil moisture. Using in situ precipitation estimates, MPI ET estimates, and atmospheric divergence estimates from the European Centre for Medium-Range Weather Forecasts Interim Re-Analysis (ERA-Interim) results in a long-term atmospheric storage change estimate of −73 mm. Long-term surface storage estimates combined with long-term runoff come close to balancing with long-term atmospheric convergence from ERA-Interim. Increasing the MPI ET by 5% leads to a better balance between surface storage changes, runoff, and atmospheric convergence. It also brings long-term atmospheric storage changes to a better balance at +13 mm.


2014 ◽  
Vol 28 (3) ◽  
pp. 359-369 ◽  
Author(s):  
Bogusław Usowicz ◽  
Wojciech Marczewski ◽  
Jerzy B. Usowicz ◽  
Mateusz I. Lukowski ◽  
Jerzy Lipiec

Abstract Soil moisture datasets at various scales are needed for sustainable land use and water management. The aim of this study was to compare soil moisture ocean salinity satellite and in situ soil moisture data for the Podlasie and Polesie regions in Eastern Poland. Both regions have similar climatic and topographic conditions but are different in land use, vegetation, and soil cover. The test sites were located on agricultural fields on sandy soils and natural vegetation on marshy soils that prevail in the Podlasie and Polesie regions, respectively. The soil moisture ocean salinity soil moisture data were obtained from radiometric measurements (1.4 GHz) and the ground soil moisture from sensors at a depth of 5 cm during the years 2010-2011. In general, temporal patterns of soil moisture from both satellite and ground measurements followed the rainfall trend. The regression coefficients, Bland-Altman analysis, concordance correlation coefficient, and total deviation index showed that the agreement between ground and soil moisture ocean salinity derived soil moisture data is better for the Podlasie than the Polesie region. The lower agreement in Polesie was attributed mostly to the presence of the widespread natural vegetation on the wetter marsh soil along with minor contribution of agriculturally used drier coarse-textured soils.


2021 ◽  
Vol 13 (24) ◽  
pp. 5155
Author(s):  
Ester Carbó ◽  
Pablo Juan ◽  
Carlos Añó ◽  
Somnath Chaudhuri ◽  
Carlos Diaz-Avalos ◽  
...  

The prediction of spatial and temporal variation of soil water content brings numerous benefits in the studies of soil. However, it requires a considerable number of covariates to be included in the study, complicating the analysis. Integrated nested Laplace approximations (INLA) with stochastic partial differential equation (SPDE) methodology is a possible approach that allows the inclusion of covariates in an easy way. The current study has been conducted using INLA-SPDE to study soil moisture in the area of the Valencia Anchor Station (VAS), soil moisture validation site for the European Space Agency SMOS (Soil Moisture and Ocean Salinity). The data used were collected in a typical ecosystem of the semiarid Mediterranean conditions, subdivided into physio-hydrological units (SMOS units) which presents a certain degree of internal uniformity with respect to hydrological parameters and capture the spatial and temporal variation of soil moisture at the local fine scale. The paper advances the knowledge of the influence of hydrodynamic properties on VAS soil moisture (texture, porosity/bulk density and soil organic matter and land use). With the goal of understanding the factors that affect the variability of soil moisture in the SMOS pixel (50 km × 50 km), five states of soil moisture are proposed. We observed that the model with all covariates and spatial effect has the lowest DIC value. In addition, the correlation coefficient was close to 1 for the relationship between observed and predicted values. The methodology applied presents the possibility to analyze the significance of different covariates having spatial and temporal effects. This process is substantially faster and more effective than traditional kriging. The findings of this study demonstrate an advancement in that framework, demonstrating that it is faster than previous methodologies, provides significance of individual covariates, is reproducible, and is easy to compare with models.


2020 ◽  
Vol 24 (10) ◽  
pp. 4793-4812
Author(s):  
Renaud Hostache ◽  
Dominik Rains ◽  
Kaniska Mallick ◽  
Marco Chini ◽  
Ramona Pelich ◽  
...  

Abstract. The main objective of this study is to investigate how brightness temperature observations from satellite microwave sensors may help to reduce errors and uncertainties in soil moisture and evapotranspiration simulations with a large-scale conceptual hydro-meteorological model. In addition, this study aims to investigate whether such a conceptual modelling framework, relying on parameter calibration, can reach the performance level of more complex physically based models for soil moisture simulations at a large scale. We use the ERA-Interim publicly available forcing data set and couple the Community Microwave Emission Modelling (CMEM) platform radiative transfer model with a hydro-meteorological model to enable, therefore, soil moisture, evapotranspiration and brightness temperature simulations over the Murray–Darling basin in Australia. The hydro-meteorological model is configured using recent developments in the SUPERFLEX framework, which enables tailoring the model structure to the specific needs of the application and to data availability and computational requirements. The hydrological model is first calibrated using only a sample of the Soil Moisture and Ocean Salinity (SMOS) brightness temperature observations (2010–2011). Next, SMOS brightness temperature observations are sequentially assimilated into the coupled SUPERFLEX–CMEM model (2010–2015). For this experiment, a local ensemble transform Kalman filter is used. Our empirical results show that the SUPERFLEX–CMEM modelling chain is capable of predicting soil moisture at a performance level similar to that obtained for the same study area and with a quasi-identical experimental set-up using the Community Land Model (CLM) . This shows that a simple model, when calibrated using globally and freely available Earth observation data, can yield performance levels similar to those of a physically based (uncalibrated) model. The correlation between simulated and in situ observed soil moisture ranges from 0.62 to 0.72 for the surface and root zone soil moisture. The assimilation of SMOS brightness temperature observations into the SUPERFLEX–CMEM modelling chain improves the correlation between predicted and in situ observed surface and root zone soil moisture by 0.03 on average, showing improvements similar to those obtained using the CLM land surface model. Moreover, at the same time the assimilation improves the correlation between predicted and in situ observed monthly evapotranspiration by 0.02 on average.


2021 ◽  
Author(s):  
Xiaolu Ling ◽  
Ying Huang ◽  
Weidong Guo ◽  
Yixin Wang ◽  
Chaorong Chen ◽  
...  

Abstract. Soil moisture (SM) plays a critical role in the water and energy cycles of the earth system; consequently, a long-term SM product with high quality is urgently needed. In this study, five SM products, including one microwave remote sensing product [European Space Agency's Climate Change Initiative (ESA CCI)] and four reanalysis datasets [European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis-Interim (ERAI), National Centers for Environmental Prediction (NCEP), the Twentieth Century Reanalysis Project from National Oceanic and Atmospheric Administration (NOAA) and the European Centre for Medium-Range Weather Forecasts Reanalysis 5 (ERA5)], are systematically evaluated using in situ measurements during 1981–2013 in four climate regions at different timescales over mainland China. The results show that ESA CCI is closest to the observations in terms of both the spatial distributions and magnitude of the monthly SM. All reanalysis products tend to overestimate soil moisture in all regions but have higher correlations than the remote sensing product except in Northwest China. The largest inconsistency is found in southern Northeast China, with a relative RMSE value larger than 0.1. However, none of the products can well reproduce the trends of interannual anomalies. The largest relative bias of 44.6 % is found for the ERAI SM product under severe drought conditions, and the lowest relative biases of 4.7 % and 9.5 % are found for the ESA CCI SM product under severe drought conditions and the NCEP SM product under normal conditions, respectively. As decomposing mean square errors in all the products suggests that the bias terms are the dominant contribution, the ESA CCI SM product is a good option for long-term hydrometeorological applications in mainland China. ERA5 is also a promising product, which is attributed to the incorporation of more observations. This long-term intercomparison study provides clues for SM product enhancement and further hydrological applications.


Sign in / Sign up

Export Citation Format

Share Document