scholarly journals Variational-Scale Segmentation for Multispectral Remote-Sensing Images Using Spectral Indices

2022 ◽  
Vol 14 (2) ◽  
pp. 326
Author(s):  
Ke Wang ◽  
Hainan Chen ◽  
Ligang Cheng ◽  
Jian Xiao

Many studies have focused on performing variational-scale segmentation to represent various geographical objects in high-resolution remote-sensing images. However, it remains a significant challenge to select the most appropriate scales based on the geographical-distribution characteristics of ground objects. In this study, we propose a variational-scale multispectral remote-sensing image segmentation method using spectral indices. Real scenes in remote-sensing images contain different types of land cover with different scales. Therefore, it is difficult to segment images optimally based on the scales of different ground objects. To guarantee image segmentation of ground objects with their own scale information, spectral indices that can be used to enhance some types of land cover, such as green cover and water bodies, were introduced into marker generation for the watershed transformation. First, a vector field model was used to determine the gradient of a multispectral remote-sensing image, and a marker was generated from the gradient. Second, appropriate spectral indices were selected, and the kernel density estimation was used to generate spectral-index marker images based on the analysis of spectral indices. Third, a series of mathematical morphology operations were used to obtain a combined marker image from the gradient and the spectral index markers. Finally, the watershed transformation was used for image segmentation. In a segmentation experiment, an optimal threshold for the spectral-index-marker generation method was identified. Additionally, the influence of the scale parameter was analyzed in a segmentation experiment based on a five-subset dataset. The comparative results for the proposed method, the commonly used watershed segmentation method, and the multiresolution segmentation method demonstrate that the proposed method yielded multispectral remote-sensing images with much better performance than the other methods.

Author(s):  
Chenming Li ◽  
Xiaoyu Qu ◽  
Yao Yang ◽  
Hongmin Gao ◽  
Yongchang Wang ◽  
...  

2020 ◽  
Vol 12 (24) ◽  
pp. 4115
Author(s):  
Xiaoli Li ◽  
Jinsong Chen ◽  
Longlong Zhao ◽  
Shanxin Guo ◽  
Luyi Sun ◽  
...  

The spatial fragmentation of high-resolution remote sensing images makes the segmentation algorithm put forward a strong demand for noise immunity. However, the stronger the noise immunity, the more serious the loss of detailed information, which easily leads to the neglect of effective characteristics. In view of the difficulty of balancing the noise immunity and effective characteristic retention, an adaptive distance-weighted Voronoi tessellation technology is proposed for remote sensing image segmentation. The distance between pixels and seed points in Voronoi tessellation is established by the adaptive weighting of spatial distance and spectral distance. The weight coefficient used to control the influence intensity of spatial distance is defined by a monotone decreasing function. Following the fuzzy clustering framework, a fuzzy segmentation model with Kullback–Leibler (KL) entropy regularization is established by using multivariate Gaussian distribution to describe the spectral characteristics and Markov Random Field (MRF) to consider the neighborhood effect of sub-regions. Finally, a series of parameter optimization schemes are designed according to parameter characteristics to obtain the optimal segmentation results. The proposed algorithm is validated on many multispectral remote sensing images with five comparing algorithms by qualitative and quantitative analysis. A large number of experiments show that the proposed algorithm can overcome the complex noise as well as better ensure effective characteristics.


2020 ◽  
Vol 12 (21) ◽  
pp. 3603 ◽  
Author(s):  
Jiaxin Wang ◽  
Chris H. Q. Ding ◽  
Sibao Chen ◽  
Chenggang He ◽  
Bin Luo

Image segmentation has made great progress in recent years, but the annotation required for image segmentation is usually expensive, especially for remote sensing images. To solve this problem, we explore semi-supervised learning methods and appropriately utilize a large amount of unlabeled data to improve the performance of remote sensing image segmentation. This paper proposes a method for remote sensing image segmentation based on semi-supervised learning. We first design a Consistency Regularization (CR) training method for semi-supervised training, then employ the new learned model for Average Update of Pseudo-label (AUP), and finally combine pseudo labels and strong labels to train semantic segmentation network. We demonstrate the effectiveness of the proposed method on three remote sensing datasets, achieving better performance without more labeled data. Extensive experiments show that our semi-supervised method can learn the latent information from the unlabeled data to improve the segmentation performance.


2021 ◽  
Vol 2138 (1) ◽  
pp. 012016
Author(s):  
Shuangling Zhu ◽  
Guli Nazi·Aili Mujiang ◽  
Huxidan Jumahong ◽  
Pazi Laiti·Nuer Maiti

Abstract A U-Net convolutional network structure is fully capable of completing the end-to-end training with extremely little data, and can achieve better results. When the convolutional network has a short link between a near input layer and a near output layer, it can implement training in a deeper, more accurate and effective way. This paper mainly proposes a high-resolution remote sensing image change detection algorithm based on dense convolutional channel attention mechanism. The detection algorithm uses U-Net network module as the basic network to extract features, combines Dense-Net dense module to enhance U-Net, and introduces dense convolution channel attention mechanism into the basic convolution unit to highlight important features, thus completing semantic segmentation of dense convolutional remote sensing images. Simulation results have verified the effectiveness and robustness of this study.


Sign in / Sign up

Export Citation Format

Share Document