scholarly journals Fractional Vegetation Cover Derived from UAV and Sentinel-2 Imagery as a Proxy for In Situ FAPAR in a Dense Mixed-Coniferous Forest?

2022 ◽  
Vol 14 (2) ◽  
pp. 380
Author(s):  
Birgitta Putzenlechner ◽  
Philip Marzahn ◽  
Philipp Koal ◽  
Arturo Sánchez-Azofeifa

The fraction of absorbed photosynthetic active radiation (FAPAR) is an essential climate variable for assessing the productivity of ecosystems. Satellite remote sensing provides spatially distributed FAPAR products, but their accurate and efficient validation is challenging in forest environments. As the FAPAR is linked to the canopy structure, it may be approximated by the fractional vegetation cover (FCOVER) under the assumption that incoming radiation is either absorbed or passed through gaps in the canopy. With FCOVER being easier to retrieve, FAPAR validation activities could benefit from a priori information on FCOVER. Spatially distributed FCOVER is available from satellite remote sensing or can be retrieved from imagery of Unmanned Aerial Vehicles (UAVs) at a centimetric resolution. We investigated remote sensing-derived FCOVER as a proxy for in situ FAPAR in a dense mixed-coniferous forest, considering both absolute values and spatiotemporal variability. Therefore, direct FAPAR measurements, acquired with a Wireless Sensor Network, were related to FCOVER derived from UAV and Sentinel-2 (S2) imagery at different seasons. The results indicated that spatially aggregated UAV-derived FCOVER was close (RMSE = 0.02) to in situ FAPAR during the peak vegetation period when the canopy was almost closed. The S2 FCOVER product underestimated both the in situ FAPAR and UAV-derived FCOVER (RMSE > 0.3), which we attributed to the generic nature of the retrieval algorithm and the coarser resolution of the product. We concluded that UAV-derived FCOVER may be used as a proxy for direct FAPAR measurements in dense canopies. As another key finding, the spatial variability of the FCOVER consistently surpassed that of the in situ FAPAR, which was also well-reflected in the S2 FAPAR and FCOVER products. We recommend integrating this experimental finding as consistency criteria in the context of ECV quality assessments. To facilitate the FAPAR sampling activities, we further suggest assessing the spatial variability of UAV-derived FCOVER to benchmark sampling sizes for in situ FAPAR measurements. Finally, our study contributes to refining the FAPAR sampling protocols needed for the validation and improvement of FAPAR estimates in forest environments.

2019 ◽  
Vol 8 (11) ◽  
pp. 497 ◽  
Author(s):  
Chen ◽  
Zhao ◽  
Zhang ◽  
Qin ◽  
Yi

The fractional vegetation cover (FVC) data measured on the ground is the main source for the calibration and verification of FVC remote sensing inversion, and its accuracy directly affects the accuracy of remote sensing inversion results. However, the existing research on the evaluation of the accuracy of the field quadrat survey of FVC based on the satellite remote sensing pixel scale is inadequate, especially in the alpine grassland of the Qinghai-Tibet Plateau. In this paper, five different alpine grasslands were examined, the accuracy of the FVC obtained by the photography method was analyzed, and the influence of the number of samples on the field survey results was studied. First, the results show that the threshold method could accurately extract the vegetation information in the photos and obtain the FVC with high accuracy and little subjective interference. Second, the number of samples measured on the ground was logarithmically related to the accuracy of the FVC of the sample plot (p < 0.001). When the number of samples was larger, the accuracy of the FVC of the sample plot was higher and closer to the real value, and the stability of data also increased with the increase of the number of samples. Third, the average FVC of the measured quadrats on the ground was able to represent the FVC of the sample plot, but on the basis that there were enough measured quadrats. Finally, the results revealed that the degree of fragmentation reflecting the state of ground vegetation affects the acquisition accuracy of FVC. When the degree of fragmentation of the sample plot is higher, the number of samples needed to achieve the accuracy index is higher. Our results suggest that when obtaining the FVC on the satellite remote sensing pixel scale, the number of samples measured on the ground is an important factor affecting the accuracy, which cannot be ignored.


Water ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 563 ◽  
Author(s):  
Nicola Ghirardi ◽  
Rossano Bolpagni ◽  
Mariano Bresciani ◽  
Giulia Valerio ◽  
Marco Pilotti ◽  
...  

We mapped the extent of submerged aquatic vegetation (SAV) of Lake Iseo (Northern Italy, over the 2015–2017 period based on satellite data (Sentinel 2 A-B) and in-situ measurements; the objective was to investigate its spatiotemporal variability. We focused on the southern sector of the lake, the location of the shallowest littorals and the most developed macrophyte communities, mainly dominated by Vallisneria spiralis and Najas marina. The method made use of both in-situ measurements and satellite data (22 Sentinel 2 A-B images) that were atmospherically corrected with 6SV code and processed with the BOMBER (Bio-Optical Model-Based tool for Estimating water quality and bottom properties from Remote sensing images). This modeling system was used to estimate the different substrate coverage (bare sediment, dense stands of macrophytes with high albedo, and sparse stand of macrophytes with low albedo). The presented results substantiate the existence of striking inter- and intra-annual variations in the spatial-cover patterns of SAV. Intense uprooting phenomena were also detected, mainly affecting V. spiralis, a species generally considered a highly plastic pioneer taxon. In this context, remote sensing emerges as a very reliable tool for mapping SAV with satisfactory accuracy by offering new perspectives for expanding our comprehension of lacustrine macrophyte dynamics and overcoming some limitations associated with traditional field surveys.


Author(s):  
D. Varade ◽  
O. Dikshit

<p><strong>Abstract.</strong> Snow cover characterization and estimation of snow geophysical parameters is a significant area of research in water resource management and surface hydrological processes. With advances in spaceborne remote sensing, much progress has been achieved in the qualitative and quantitative characterization of snow geophysical parameters. However, most of the methods available in the literature are based on the microwave backscatter response of snow. These methods are mostly based on the remote sensing data available from active microwave sensors. Moreover, in alpine terrains, such as in the Himalayas, due to the geometrical distortions, the missing data is significant in the active microwave remote sensing data. In this paper, we present a methodology utilizing the multispectral observations of Sentinel-2 satellite for the estimation of surface snow wetness. The proposed approach is based on the popular triangle method which is significantly utilized for the assessment of soil moisture. In this case, we develop a triangular feature space using the near infrared (NIR) reflectance and the normalized differenced snow index (NDSI). Based on the assumption that the NIR reflectance is linearly related to the liquid water content in the snow, we derive a physical relationship for the estimation of snow wetness. The modeled estimates of snow wetness from the proposed approach were compared with in-situ measurements of surface snow wetness. A high correlation determined by the coefficient of determination of 0.94 and an error of 0.535 was observed between the proposed estimates of snow wetness and in-situ measurements.</p>


Irriga ◽  
2021 ◽  
Vol 1 (3) ◽  
pp. 585-598
Author(s):  
Pedro Henrique Jandreice Magnoni ◽  
Cesar De Oliveira Ferreira Silva ◽  
Rodrigo Lilla Manzione

SENSORIAMENTO REMOTO APLICADO AO MANEJO DA IRRIGAÇÃO EM ÁREAS COM ESCASSEZ DE DADOS: ESTUDO DE CASO EM PIVÔ CENTRAL EM ITATINGA-SP*     PEDRO HENRIQUE JANDREICE MAGNONI1; CÉSAR DE OLIVEIRA FERREIRA SILVA1 E RODRIGO LILLA MANZIONE2   1 Departamento de Engenharia Rural, Faculdade de Ciências Agronômicas, Universidade Estadual Paulista", Avenida Universitária, n° 3780, Altos do Paraíso, 18610-034, Botucatu, São Paulo, Brasil,  [email protected]; [email protected]. 2 Departamento de Engenharia de Biossistemas, Faculdade de Ciências e Engenharia, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Rua Domingos da Costa Lopes, 780, CEP 17602496, Tupã – SP, Brasil. E-mail: [email protected]. *Este artigo é proveniente das dissertações de mestrado dos dois primeiros autores.     1 RESUMO   Ferramentas baseadas em sensoriamento remoto possibilitam o monitoramento do balanço hídrico da água em diferentes resoluções espaciais e temporais. Ainda assim, modelos que exigem dados in-situ impossibilitam sua aplicação em áreas com escassez de dados. No sentido de lidar com esse desafio, o presente trabalho apresenta uma abordagem de escolha do momento de irrigar, pelo balanço hídrico da água no solo, baseada em estimativa da evapotranspiração real (ETA) obtida com o uso conjunto de imagens multiespectrais do sensor MSI/SENTINEL-2 e dados de uma estação meteorológica pública. A área de estudo foi um pivô central localizado no munícipio de Itatinga-SP. Para a tomada de decisão do momento de irrigar, com base em um manejo por lâmina de irrigação fixa, foi feita a interpolação da fração evapotranspirativa entre os dias com imagens disponíveis para obter a ETA nos dias sem imagens por meio do seu produto com a evapotranspiração de referência. Essa abordagem captou variações climáticas essenciais para a estimativa do balanço hídrico em dias sem imagem. Destaca-se nessa aplicação conjunta sua capacidade de ser realizada sem necessitar de parâmetros específicos da cultura, do microclima ou do relevo, tornando-se interessante para regiões com escassez de dados.   Palavras-chave:  evapotranspiração, momento de irrigar, agriwater.     MAGNONI, P. H. J.; SILVA, C. O. F.; MANZIONE, R. L. REMOTE SENSING APPLIED TO IRRIGATION MANAGEMENT IN AREAS WITH LACK OF DATA: A CASE STUDY IN A CENTRAL PIVOT IN ITATINGA-SP     2 ABSTRACT   Remote sensing-based tools allow the monitoring of water budgets over different spatial and temporal resolutions. Nevertheless, some models require in situ data, preventing their application in areas with a lack of data. To address this challenge, this work presents an approach for irrigation scheduling, based on soil water budget estimation using actual evapotranspiration (ETA) obtained using MSI/SENTINEL-2 multispectral images and data from a public meteorological station. The study area consisted of a central pivot located in the municipality of Itatinga-SP, Brazil. For decision-making of irrigation scheduling, considering a fixed irrigation rate, the evapotranspiration fraction was interpolated between the days with available images to obtain the ETA on the days without images using its product with the reference evapotranspiration. This approach captured essential climate variations for estimating the water budget on non-image days. Noteworthy in this joint application is its suitability to be performed not requiring crop-, microclimate- or relief-specific parameters, making it useful for regions with a lack of data.   Keywords: evapotranspiration, irrigation scheduling, agriwater.


2019 ◽  
Vol 12 (1) ◽  
pp. 50 ◽  
Author(s):  
Mahyar Aboutalebi ◽  
Alfonso F. Torres-Rua ◽  
Mac McKee ◽  
William P. Kustas ◽  
Hector Nieto ◽  
...  

In recent years, the deployment of satellites and unmanned aerial vehicles (UAVs) has led to production of enormous amounts of data and to novel data processing and analysis techniques for monitoring crop conditions. One overlooked data source amid these efforts, however, is incorporation of 3D information derived from multi-spectral imagery and photogrammetry algorithms into crop monitoring algorithms. Few studies and algorithms have taken advantage of 3D UAV information in monitoring and assessment of plant conditions. In this study, different aspects of UAV point cloud information for enhancing remote sensing evapotranspiration (ET) models, particularly the Two-Source Energy Balance Model (TSEB), over a commercial vineyard located in California are presented. Toward this end, an innovative algorithm called Vegetation Structural-Spectral Information eXtraction Algorithm (VSSIXA) has been developed. This algorithm is able to accurately estimate height, volume, surface area, and projected surface area of the plant canopy solely based on point cloud information. In addition to biomass information, it can add multi-spectral UAV information to point clouds and provide spectral-structural canopy properties. The biomass information is used to assess its relationship with in situ Leaf Area Index (LAI), which is a crucial input for ET models. In addition, instead of using nominal field values of plant parameters, spatial information of fractional cover, canopy height, and canopy width are input to the TSEB model. Therefore, the two main objectives for incorporating point cloud information into remote sensing ET models for this study are to (1) evaluate the possible improvement in the estimation of LAI and biomass parameters from point cloud information in order to create robust LAI maps at the model resolution and (2) assess the sensitivity of the TSEB model to using average/nominal values versus spatially-distributed canopy fractional cover, height, and width information derived from point cloud data. The proposed algorithm is tested on imagery from the Utah State University AggieAir sUAS Program as part of the ARS-USDA GRAPEX Project (Grape Remote sensing Atmospheric Profile and Evapotranspiration eXperiment) collected since 2014 over multiple vineyards located in California. The results indicate a robust relationship between in situ LAI measurements and estimated biomass parameters from the point cloud data, and improvement in the agreement between TSEB model output of ET with tower measurements when employing LAI and spatially-distributed canopy structure parameters derived from the point cloud data.


2019 ◽  
Vol 11 (15) ◽  
pp. 1744 ◽  
Author(s):  
Daniel Maciel ◽  
Evlyn Novo ◽  
Lino Sander de Carvalho ◽  
Cláudio Barbosa ◽  
Rogério Flores Júnior ◽  
...  

Remote sensing imagery are fundamental to increasing the knowledge about sediment dynamics in the middle-lower Amazon floodplains. Moreover, they can help to understand both how climate change and how land use and land cover changes impact the sediment exchange between the Amazon River and floodplain lakes in this important and complex ecosystem. This study investigates the suitability of Landsat-8 and Sentinel-2 spectral characteristics in retrieving total (TSS) and inorganic (TSI) suspended sediments on a set of Amazon floodplain lakes in the middle-lower Amazon basin using in situ Remote Sensing Reflectance (Rrs) measurements to simulate Landsat 8/OLI (Operational Land Imager) and Sentinel 2/MSI (Multispectral Instrument) bands and to calibrate/validate several TSS and TSI empirical algorithms. The calibration was based on the Monte Carlo Simulation carried out for the following datasets: (1) All-Dataset, consisting of all the data acquired during four field campaigns at five lakes spread over the lower Amazon floodplain (n = 94); (2) Campaign-Dataset including samples acquired in a specific hydrograph phase (season) in all lakes. As sample size varied from one season to the other, n varied from 18 to 31; (3) Lake-Dataset including samples acquired in all seasons at a given lake with n also varying from 17 to 67 for each lake. The calibrated models were, then, applied to OLI and MSI scenes acquired in August 2017. The performance of three atmospheric correction algorithms was also assessed for both OLI (6S, ACOLITE, and L8SR) and MSI (6S, ACOLITE, and Sen2Cor) images. The impact of glint correction on atmosphere-corrected image performance was assessed against in situ glint-corrected Rrs measurements. After glint correction, the L8SR and 6S atmospheric correction performed better with the OLI and MSI sensors, respectively (Mean Absolute Percentage Error (MAPE) = 16.68% and 14.38%) considering the entire set of bands. However, for a given single band, different methods have different performances. The validated TSI and TSS satellite estimates showed that both in situ TSI and TSS algorithms provided reliable estimates, having the best results for the green OLI band (561 nm) and MSI red-edge band (705 nm) (MAPE < 21%). Moreover, the findings indicate that the OLI and MSI models provided similar errors, which support the use of both sensors as a virtual constellation for the TSS and TSI estimate over an Amazon floodplain. These results demonstrate the applicability of the calibration/validation techniques developed for the empirical modeling of suspended sediments in lower Amazon floodplain lakes using medium-resolution sensors.


2018 ◽  
Vol 10 (10) ◽  
pp. 1642 ◽  
Author(s):  
Kristof Van Tricht ◽  
Anne Gobin ◽  
Sven Gilliams ◽  
Isabelle Piccard

A timely inventory of agricultural areas and crop types is an essential requirement for ensuring global food security and allowing early crop monitoring practices. Satellite remote sensing has proven to be an increasingly more reliable tool to identify crop types. With the Copernicus program and its Sentinel satellites, a growing source of satellite remote sensing data is publicly available at no charge. Here, we used joint Sentinel-1 radar and Sentinel-2 optical imagery to create a crop map for Belgium. To ensure homogenous radar and optical inputs across the country, Sentinel-1 12-day backscatter mosaics were created after incidence angle normalization, and Sentinel-2 normalized difference vegetation index (NDVI) images were smoothed to yield 10-daily cloud-free mosaics. An optimized random forest classifier predicted the eight crop types with a maximum accuracy of 82% and a kappa coefficient of 0.77. We found that a combination of radar and optical imagery always outperformed a classification based on single-sensor inputs, and that classification performance increased throughout the season until July, when differences between crop types were largest. Furthermore, we showed that the concept of classification confidence derived from the random forest classifier provided insight into the reliability of the predicted class for each pixel, clearly showing that parcel borders have a lower classification confidence. We concluded that the synergistic use of radar and optical data for crop classification led to richer information increasing classification accuracies compared to optical-only classification. Further work should focus on object-level classification and crop monitoring to exploit the rich potential of combined radar and optical observations.


2020 ◽  
Vol 13 (3) ◽  
pp. 1267-1284 ◽  
Author(s):  
Theo Baracchini ◽  
Philip Y. Chu ◽  
Jonas Šukys ◽  
Gian Lieberherr ◽  
Stefan Wunderle ◽  
...  

Abstract. The understanding of physical dynamics is crucial to provide scientifically credible information on lake ecosystem management. We show how the combination of in situ observations, remote sensing data, and three-dimensional hydrodynamic (3D) numerical simulations is capable of resolving various spatiotemporal scales involved in lake dynamics. This combination is achieved through data assimilation (DA) and uncertainty quantification. In this study, we develop a flexible framework by incorporating DA into 3D hydrodynamic lake models. Using an ensemble Kalman filter, our approach accounts for model and observational uncertainties. We demonstrate the framework by assimilating in situ and satellite remote sensing temperature data into a 3D hydrodynamic model of Lake Geneva. Results show that DA effectively improves model performance over a broad range of spatiotemporal scales and physical processes. Overall, temperature errors have been reduced by 54 %. With a localization scheme, an ensemble size of 20 members is found to be sufficient to derive covariance matrices leading to satisfactory results. The entire framework has been developed with the goal of near-real-time operational systems (e.g., integration into meteolakes.ch).


Sign in / Sign up

Export Citation Format

Share Document