scholarly journals Data assimilation of in situ and satellite remote sensing data to 3D hydrodynamic lake models: a case study using Delft3D-FLOW v4.03 and OpenDA v2.4

2020 ◽  
Vol 13 (3) ◽  
pp. 1267-1284 ◽  
Author(s):  
Theo Baracchini ◽  
Philip Y. Chu ◽  
Jonas Šukys ◽  
Gian Lieberherr ◽  
Stefan Wunderle ◽  
...  

Abstract. The understanding of physical dynamics is crucial to provide scientifically credible information on lake ecosystem management. We show how the combination of in situ observations, remote sensing data, and three-dimensional hydrodynamic (3D) numerical simulations is capable of resolving various spatiotemporal scales involved in lake dynamics. This combination is achieved through data assimilation (DA) and uncertainty quantification. In this study, we develop a flexible framework by incorporating DA into 3D hydrodynamic lake models. Using an ensemble Kalman filter, our approach accounts for model and observational uncertainties. We demonstrate the framework by assimilating in situ and satellite remote sensing temperature data into a 3D hydrodynamic model of Lake Geneva. Results show that DA effectively improves model performance over a broad range of spatiotemporal scales and physical processes. Overall, temperature errors have been reduced by 54 %. With a localization scheme, an ensemble size of 20 members is found to be sufficient to derive covariance matrices leading to satisfactory results. The entire framework has been developed with the goal of near-real-time operational systems (e.g., integration into meteolakes.ch).

2019 ◽  
Author(s):  
Theo Baracchini ◽  
Philip Yifei Chu ◽  
Jonas Šukys ◽  
Gian Lieberherr ◽  
Stefan Wunderle ◽  
...  

Abstract. The understanding of lakes physical dynamics is crucial to provide scientifically credible information for ecosystem management. We show how the combination of in-situ data, remote sensing observations and three-dimensional hydrodynamic numerical simulations is capable of delivering various spatio-temporal scales involved in lakes dynamics. This combination is achieved through data assimilation (DA) and uncertainty quantification. In this study, we present a flexible framework for DA into lakes three-dimensional hydrodynamic models. Using an Ensemble Kalman Filter, our approach accounts for model and observational uncertainties. We demonstrate the framework by assimilating in-situ and satellite remote sensing temperature data into a three-dimensional hydrodynamic model of Lake Geneva. Results show that DA effectively improves model performance over a broad range of spatio-temporal scales and physical processes. Overall, temperature errors have been reduced by 54 %. With a localization scheme, an ensemble size of 20 members is found to be sufficient to derive covariance matrices leading to satisfactory results. The entire framework has been developed for the constraints of operational systems and near real-time operations (e.g. integration into http://meteolakes.ch).


2021 ◽  
Vol 13 (9) ◽  
pp. 1715
Author(s):  
Foyez Ahmed Prodhan ◽  
Jiahua Zhang ◽  
Fengmei Yao ◽  
Lamei Shi ◽  
Til Prasad Pangali Sharma ◽  
...  

Drought, a climate-related disaster impacting a variety of sectors, poses challenges for millions of people in South Asia. Accurate and complete drought information with a proper monitoring system is very important in revealing the complex nature of drought and its associated factors. In this regard, deep learning is a very promising approach for delineating the non-linear characteristics of drought factors. Therefore, this study aims to monitor drought by employing a deep learning approach with remote sensing data over South Asia from 2001–2016. We considered the precipitation, vegetation, and soil factors for the deep forwarded neural network (DFNN) as model input parameters. The study evaluated agricultural drought using the soil moisture deficit index (SMDI) as a response variable during three crop phenology stages. For a better comparison of deep learning model performance, we adopted two machine learning models, distributed random forest (DRF) and gradient boosting machine (GBM). Results show that the DFNN model outperformed the other two models for SMDI prediction. Furthermore, the results indicated that DFNN captured the drought pattern with high spatial variability across three penology stages. Additionally, the DFNN model showed good stability with its cross-validated data in the training phase, and the estimated SMDI had high correlation coefficient R2 ranges from 0.57~0.90, 0.52~0.94, and 0.49~0.82 during the start of the season (SOS), length of the season (LOS), and end of the season (EOS) respectively. The comparison between inter-annual variability of estimated SMDI and in-situ SPEI (standardized precipitation evapotranspiration index) showed that the estimated SMDI was almost similar to in-situ SPEI. The DFNN model provides comprehensive drought information by producing a consistent spatial distribution of SMDI which establishes the applicability of the DFNN model for drought monitoring.


2021 ◽  
Author(s):  
Kuei-Hua Hsu ◽  
Laurent Longuevergne ◽  
Annette Eicker ◽  
Mehedi Hasan ◽  
Andreas Güntner ◽  
...  

<p>The dynamic global water cycle is of ecological and societal importance as it affects the availability of freshwater resources and influences extreme events such as floods and droughts. This work is set in the frame of the GlobalCDA Research Unit, which has the goal of developing a calibration/data assimilation approach (C/DA) to improve the quantification of freshwater resources by combining the global hydrological model WaterGAP with geodetic (GRACE, altimetry) and remote sensing data. This presentation focuses on the validation of the C/DA results using an independent in-situ groundwater data set based on ~1500 monitoring boreholes in France.</p><p>The resulting validation data set is applied to independently assess the output of several C/DA experiments: data assimilation using different combinations of the available geodetic and remote sensing data sets and different methods of model calibration, based on either an ensemble Kalman filter approach or a Pareto-optimal calibration algorithm.</p><p>To further understand in-situ groundwater and WaterGAP data set, we subtract the coherent signals using Empirical orthogonal function (EOF).  Over 85% variances can be explained by the first 3 EOFs for both data sets.</p>


2011 ◽  
Vol 54 (9) ◽  
pp. 1430-1440 ◽  
Author(s):  
ChunXiang Shi ◽  
ZhengHui Xie ◽  
Hui Qian ◽  
MiaoLing Liang ◽  
XiaoChun Yang

2014 ◽  
Vol 18 (3) ◽  
pp. 997-1007 ◽  
Author(s):  
C. I. Michailovsky ◽  
P. Bauer-Gottwein

Abstract. River basin management can greatly benefit from short-term river discharge predictions. In order to improve model produced discharge forecasts, data assimilation allows for the integration of current observations of the hydrological system to produce improved forecasts and reduce prediction uncertainty. Data assimilation is widely used in operational applications to update hydrological models with in situ discharge or level measurements. In areas where timely access to in situ data is not possible, remote sensing data products can be used in assimilation schemes. While river discharge itself cannot be measured from space, radar altimetry can track surface water level variations at crossing locations between the satellite ground track and the river system called virtual stations (VS). Use of radar altimetry versus traditional monitoring in operational settings is complicated by the low temporal resolution of the data (between 10 and 35 days revisit time at a VS depending on the satellite) as well as the fact that the location of the measurements is not necessarily at the point of interest. However, combining radar altimetry from multiple VS with hydrological models can help overcome these limitations. In this study, a rainfall runoff model of the Zambezi River basin is built using remote sensing data sets and used to drive a routing scheme coupled to a simple floodplain model. The extended Kalman filter is used to update the states in the routing model with data from 9 Envisat VS. Model fit was improved through assimilation with the Nash–Sutcliffe model efficiencies increasing from 0.19 to 0.62 and from 0.82 to 0.88 at the outlets of two distinct watersheds, the initial NSE (Nash–Sutcliffe efficiency) being low at one outlet due to large errors in the precipitation data set. However, model reliability was poor in one watershed with only 58 and 44% of observations falling in the 90% confidence bounds, for the open loop and assimilation runs respectively, pointing to problems with the simple approach used to represent model error.


Sign in / Sign up

Export Citation Format

Share Document