scholarly journals DOA Estimation for Coprime Linear Array Based on MI-ESPRIT and Lookup Table

Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 3043 ◽  
Author(s):  
Weike Zhang ◽  
Xi Chen ◽  
Kaibo Cui ◽  
Tao Xie ◽  
Naichang Yuan

In order to improve the angle measurement performance of a coprime linear array, this paper proposes a novel direction-of-arrival (DOA) estimation algorithm for a coprime linear array based on the multiple invariance estimation of signal parameters via rotational invariance techniques (MI-ESPRIT) and a lookup table method. The proposed algorithm does not require a spatial spectrum search and uses a lookup table to solve ambiguity, which reduces the computational complexity. To fully use the subarray elements, the DOA estimation precision is higher compared with existing algorithms. Moreover, the algorithm avoids the matching error when multiple signals exist by using the relationship between the signal subspace of two subarrays. Simulation results verify the effectiveness of the proposed algorithm.

Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5775
Author(s):  
Hyeonjin Chung ◽  
Jeungmin Joo ◽  
Sunwoo Kim

In this paper, an off-grid direction-of-arrival (DoA) estimation algorithm which can work on a non-uniform linear array (NULA) is proposed. The original semidefinite programming (SDP) representation of the atomic norm exploits a summation of one-rank matrices constructed by atoms, where the summation of one-rank matrices equals a Hermitian Toeplitz matrix when using the uniform linear array (ULA). On the other hand, when the antennas in the array are placed arbitrarily, the summation of one-rank matrices is a Hermitian matrix whose diagonal elements are equivalent. Motivated by this property, the proposed algorithm replaces the Hermitian Toeplitz matrix in the original SDP with the constrained Hermitian matrix. Additionally, when the antennas are placed symmetrically, the performance can be enforced by adding extra constraints to the Hermitian matrix. The simulation results show that the proposed algorithm achieves higher estimation accuracy and resolution than other algorithms on both array structures; i.e., the arbitrary array and the symmetric array.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Song Liu ◽  
Lisheng Yang ◽  
Shizhong Yang ◽  
Qingping Jiang ◽  
Haowei Wu

A blind direction-of-arrival (DOA) estimation algorithm based on the estimation of signal parameters via rotational invariance techniques (ESPRIT) is proposed for a uniform circular array (UCA) when strong electromagnetic mutual coupling is present. First, an updated UCA model with mutual coupling in a discrete Fourier transform (DFT) beam space is deduced, and the new manifold matrix is equal to the product of a centrosymmetric diagonal matrix and a Vandermonde-structure matrix. Then we carry out blind DOA estimation through a modified ESPRIT method, thus avoiding the need for spatial angular searching. In addition, two mutual coupling parameter estimation methods are presented after the DOAs have been estimated. Simulation results show that the new algorithm is reliable and effective especially for closely spaced signals.


Symmetry ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 329
Author(s):  
Jiufei Luo ◽  
Haitao Xu ◽  
Kai Zheng ◽  
Xinyi Li ◽  
Song Feng

Asymmetric windows are of increasing interest to researchers because of the nonlinear and adjustable phase response, as well as alterable time delay. Short-time phase distortion can provide an essential improvement in speech coding, and also has better performance in speech recognition. The merits of asymmetric windows in the aspect of spectral behaviors have an important function in frequency component detection and parameter estimation. In this paper, the phase response of windows were further studied, and the phase characteristics of symmetric and asymmetric windows are described. The relationship between the barycenter of windows in the time domain, and the phase characteristic at the center of the main lobe in the frequency domain, was established. In light of the relationship, an improved version of the asymmetric window- based frequency estimation algorithm was proposed. The improved algorithm has advantages of straightforward implementation and computational efficiency. The numeric simulation results also indicate that the improved approach is more robust than the traditional method against additive random noise.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-5
Author(s):  
Jianzhong Li ◽  
Xiaobo Gu ◽  
Ruidian Zhan ◽  
Xiaoming Xiong ◽  
Yuan Liu

In this paper, a direction of arrival (DOA) estimator is proposed to improve the cyber-physical interactions, which is based on the second-order statistics without a priori knowledge of the source number. The impact of noise will firstly be eliminated. Then the relationship between the processed covariance matrix and the steering matrix is studied. By applying the elementary column transformation, an oblique projector will be designed without the source number. At last, a rooting method will be adopted to estimate the DOAs with the constructed projector. Simulation results show that the proposed method performs as well as other methods, which requires that the source number must be known.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Hao Feng ◽  
Lutao Liu ◽  
Biyang Wen

Most conventional direction-of-arrival (DOA) estimation algorithms are affected by the effect of mutual coupling, which make the performance of DOA estimation degrade. In this paper, a novel DOA estimation algorithm for conformal array in the presence of unknown mutual coupling is proposed. The special mutual coupling matrix (MCM) is applied to eliminate the effect of mutual coupling. With suitable array design, the decoupling between polarization parameter and angle information is accomplished. The two-demission DOA (2D-DOA) estimation is finally achieved based on estimation of signal parameters via rotational invariance techniques (ESPRIT). The proposed algorithm can be extended to conical conformal array as well. Two parameter pairing methods are illustrated for cylindrical and conical conformal array, respectively. The computer simulation verifies the effectiveness of the proposed algorithm.


2014 ◽  
Vol 513-517 ◽  
pp. 2698-2701
Author(s):  
Fa Tang Chen ◽  
Lu Gang Wang ◽  
Dan Wang

In order to solve the positioning problem of radar and communications, broadband signal and improve the positioning accuracy, this paper proposes a method of DOA estimation under uniform linear array, the method based on fast Fourier transform, using narrowband MUSIC algorithm principle, the broadband signal decomposition for multiple narrowband signal frequency band, and then for each frequency band for narrowband signal DOA estimation. The simulation results show that the algorithm has good performance.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Heping Shi ◽  
Wen Leng ◽  
Anguo Wang ◽  
Tongfeng Guo

A novel direction-of-arrival (DOA) estimation method is proposed to cope with the scenario where a number of uncorrelated and coherent narrowband sources simultaneously impinge on the far-field of a uniform linear array (ULA). In the proposed method, the DOAs of uncorrelated sources are firstly estimated by utilizing the property of the moduli of eigenvalues of the DOA matrix. Afterwards, the contributions of uncorrelated sources and the interference of noise are eliminated completely by exploiting the improved spatial differencing technique and only the coherent components remain in the spatial differencing matrix. Finally, the remaining coherent sources can be resolved by performing the improved spatial smoothing scheme on the spatial differencing matrix. The presented method can resolve more number of sources than that of the array elements and distinguish the uncorrelated and coherent sources that come from the same direction as well as improving the estimation performance. Simulation results demonstrate the effectiveness and efficiency of the proposed method.


2014 ◽  
Vol 556-562 ◽  
pp. 3361-3364
Author(s):  
Chi Jiang ◽  
Xiao Fei Zhang ◽  
Li Cen Zhang

The algorithm of DOA estimation for non-uniform linear array with Parallel Factor (PARAFAC) and power loading is carried out detailed studies and simulation in this paper, and we use Trilinear Alternating Least Squares (TALS) estimation algorithm to estimate the DOA of signal source. In addition, we make a simulation analysis and comparison of different parameters (Signal-to-noise ratio, the number of snapshots, the number of antenna elements, the number of targets, the similar angles) and different algorithm. Finally the thesis summarizes the work.


2013 ◽  
Vol 716 ◽  
pp. 554-558
Author(s):  
Xiang Yang Huang ◽  
Ming Shun Ai ◽  
Peng Peng Yu

This paper presents a signal direction-of-arrival (DOA) estimation approach that possesses excellent performance in spatial and temporal correlated signals environments. Firstly, an algebraic solution of the null subspace is derived based on the Vandermonde structured steering vectors of uniform linear array when all the sources possess identical nonzero mean value, and then, the DOA estimation is obtained with a polynomial rooting method. The novel algorithm performs much better than the conventional algorithms in the situation that the sources are closely spaced or correlated, and simulations have verified the validity of the algorithm.


Sign in / Sign up

Export Citation Format

Share Document