scholarly journals In-Situ Monitoring of a Filament Wound Pressure Vessel by the MWCNT Sensor under Hydraulic Fatigue Cycling and Pressurization

Sensors ◽  
2019 ◽  
Vol 19 (6) ◽  
pp. 1396 ◽  
Author(s):  
Biao Xiao ◽  
Bin Yang ◽  
Fu-Zhen Xuan ◽  
Yun Wan ◽  
Chaojie Hu ◽  
...  

As a result of the high specific strength/stiffness to mass ratio, filament wound composite pressure vessels are extensively used to contain gas or fluid under pressure. The ability to in-situ monitor the composite pressure vessels for possible damage is important for high-pressure medium storage industries. This paper describes an in-situ monitoring method to permanently monitor composite pressure vessels for their structural integrity. The sensor is made of a multi-walled carbon nanotube (MWCNT) that can be embedded in the composite skin of the pressure vessels. The sensing ability of the sensor is firstly evaluated in various mechanical tests, and in-situ monitoring experiments of a full-scale composite pressure vessel during hydraulic fatigue cycling and pressurization are performed. The monitoring results of the MWCNT sensor are compared with the strains measured by the strain gauges. The results show that the measured signal by the developed sensor matches the mechanical behavior of the composite laminates under various load conditions. In the hydraulic fatigue test, the relationship between the resistance and the strain is built, and could be used to quantitative monitor the filament wound pressure vessel. The bursting of the pressure vessel can be detected by the sharp increase of the MWCNT sensor resistance. Embedding the MWCNT sensor into the composite pressure vessel is successfully demonstrated as a promising method for structural health monitoring.

1999 ◽  
Author(s):  
William E. Howard ◽  
G. E. O. Widera

Abstract The use of filament-wound composite pressure vessels has expanded into many new markets in recent years, creating the need for better design and analysis techniques, particularly for the end domes. In this paper, design and analysis techniques are developed for elliptical-conical dome profiles with planar filament winding patterns. The effects of wide winding bandwidth are included by dividing the band into sub-bands and considering any point on the dome contour to be a laminate made up of the sub-bands. The slippage tendency of the band at its edges is also calculated.


2021 ◽  
Vol 5 (2) ◽  
pp. 56
Author(s):  
Kumar C. Jois ◽  
Marcus Welsh ◽  
Thomas Gries ◽  
Johannes Sackmann

In this work, the stress distribution along cylindrical composite pressure vessels with different dome geometries is investigated. The dome contours are generated through an integral method based on shell stresses. Here, the influence of each dome contour on the stress distribution at the interface of the dome-cylinder is evaluated. At first, the integral formulation for dome curve generation is presented and solved for the different dome contours. An analytical approach for the calculation of the secondary stresses in a cylindrical pressure vessel is introduced. For the analysis, three different cases were investigated: (i) a polymer liner; (ii) a single layer of carbon-epoxy composite wrapped on a polymer liner; and (iii) multilayer carbon-epoxy pressure vessel. Accounting for nonlinear geometry is seen to have an effect on the stress distribution on the pressure vessel, also on the isotropic liner. Significant secondary stresses were observed at the dome-cylinder interface and they reach a maximum at a specific distance from the interface. A discussion on the trend in these stresses is presented. The numerical results are compared with the experimental results of the multilayer pressure vessel. It is observed that the secondary stresses present in the vicinity of the dome-cylinder interface has a significant effect on the failure mechanism, especially for thick walled cylindrical composite pressure vessel. It is critical that these secondary stresses are directly accounted for in the initial design phase.


2016 ◽  
Vol 51 (14) ◽  
pp. 1961-1969 ◽  
Author(s):  
Ji Zhou ◽  
Jianqiao Chen ◽  
Yaochen Zheng ◽  
Zhu Wang ◽  
Qunli An

Filament-wound composite pressure vessels, owing to the advantages of their high specific strength, specific modulus and fatigue resistance, as well as excellent design performance, have been widely used in energy engineering, chemical industry and other fields. A filament-wound composite pressure vessel generally consists of two parts, a cylindrical drum part and the dome parts. In the cylindrical drum part, the filament winding angle and the winding layer thickness can be easily determined due to the regular shape. In the dome parts, however, both the winding angle and the thickness vary along the meridian line. Performance of the dome parts, which strongly depends on the effect of end-opening and the winding mode, dominates the performance of a pressure vessel. In this paper, optimum design of the dome parts is studied by considering both geodesic winding and non-geodesic winding patterns. A hyperelliptic function is adopted as the basis function for describing the meridian of the dome shape. The dome contour is optimized by taking the shape factor (S.F.) as the objective and parameters in the basis function as the design variables. A specific composite pressure vessel is taken as the numerical analysis example with varying dome shape which is to be optimized. The optimum design solution is obtained through the particle swarm optimization algorithm. It shows that an optimized dome with non-geodesic winding has better S.F. as compared with geodesic winding. Influences of the slippage coefficient and the polar opening on the S.F. are also discussed.


Author(s):  
Martin Muscat ◽  
Duncan Camilleri ◽  
Brian Ellul

The increase in stiffness to weight ratio and relative ease of manufacturing fibre reinforced composite pressure vessels, have put such vessels at the forefront of technology. However only limited research and specific codes pertaining exclusively to composite pressure vessel design can be found in literature. The ASME Boiler and Pressure Vessel (BPVC) Section X Code and the European design codes EN 13121-3:2016 (GRP tanks and vessels for use above ground) together with EN 13923:2005 (Filament wound FRP pressure vessels — materials, design, manufacturing and testing) are some of the few known design codes applicable to composite pressure vessels. These codes utilise both design by rule (DBR) and design by analysis (DBA) methods. The authors believe that more studies along the DBA route would benefit the composite pressure vessel design community and make it more accessible to designers and engineers. A similar scenario has already been seen in the last 10 to 15 years for steel pressure vessel design codes when DBA based on inelastic analysis was introduced. In line with these thoughts, this study compares the different design methods to prevent buckling and applies finite element analysis (FEA) to analyse a hemispherical GFRP pressure vessel head subjected to external pressure. The effect of material damage and geometrical imperfections on the final collapse failure is examined and discussed.


Author(s):  
Sung Kyu Ha ◽  
Stephen W. Tsai ◽  
Seong Jong Kim ◽  
Khazar Hayat ◽  
Kyo Kook Jin

A multi-scale fatigue life prediction methodology of composite pressure vessels subjected to multi-axial loading has been proposed in this paper. The multi-scale approach starts from the constituents, fiber, matrix and interface, leading to predict behavior of ply, laminates and eventually the composite structures. The life prediction methodology is composed of two steps: macro stress analysis and micro mechanics of failure based on fatigue analysis. In the macro stress analysis, multiaxial fatigue loading acting at laminate is determined from finite element analysis (FEM) of composite pressure vessel, and ply stresses are computed using a classical laminate theory (CLT). The micro-scale stresses are calculated in each constituent (i.e. matrix, interface, and fiber) from ply stresses using a micromechanical model. Micromechanics of failure (MMF) was originally developed to predict the strength of composites and now extended to prediction of fatigue life. Two methods are employed in predicting fatigue life of each constituent, i.e. an equivalent stress method for multi-axially loaded matrix, and a critical plane method for the interface. A modified Goodman diagram is used to take into account the generic mean stresses. Damages from each loading cycle are accumulated using Miner’s rule. Each fiber is assumed to follow a probabilistic failure depending on the length. Using the overall micro and macro models established in this study, Monte Carlo simulation has been performed to predict the overall fatigue life of a composite pressure vessel considering statistical distribution of material properties of each constituent and manufacturing winding helical angle.


Author(s):  
Martin Muscat ◽  
Duncan Camilleri ◽  
Brian Ellul

The ASME Boiler and pressure vessel code Section VIII Division 2 and the European unfired pressure vessel code EN13445 Part 3 Design by Analysis parts dealing primarily with steel pressure vessels have been around for the last ten to fifteen years. The culmination of work on pressure vessel design by analysis address failure modes directly and are very efficient in order to guarantee that the designed and fabricated steel pressure vessels are fit for their purpose. The ASME Boiler and pressure vessel code Section X and the European codes BS EN13923 and BS EN13121 are some of the existing codes that cover design methods for composite pressure vessels. In these codes various failure criteria and damage mechanics models are possible but as such no comprehensive and robust design by analysis methods have been effectively established to encapsulate all composite pressure vessel failure modes. For instance the design of fibre-reinforced composite pressure vessels is still heavily reliant on experimental testing and prototype verification as opposed to the well-established design by analysis methods applicable to steel pressure vessels. Nonetheless a number of damage mechanics models ranging from mesoscale to microscale models have been established in other research work done on composite materials. This paper reviews the different composite pressure vessel design methods identified in the codes and standards and assesses damage mechanisms that can be used within a design by analysis context to design against possible modes of failure such as the limit load mode of failure, the progressive deformation mode of failure, the fatigue mode of failure and the buckling mode of failure. Damage mechanisms can also be used to develop criteria that allow a stress analyst deduce whether the material has failed, how it has failed and whether it has lost its capability to carry the load actions applied to it. The paper also highlights requirements for design methods based on the finite element method, and the necessary experimental validation required for different damage mechanisms leading to the different modes of failure.


2011 ◽  
pp. 115-148
Author(s):  
Hugh Reynolds

Abstract The necessity of developing the lightest-weight structures with sufficient strength was the driving factor for the development of filament-wound composite pressure vessels. This chapter presents a brief history of the development of rocket motor cases (RMCs), followed by a comparison of the advantages of composites over metals for RMCs. A discussion on a typical design, analysis, and manufacturing operation follows. The chapter introduces the basic design approach and shows some sizing techniques along with example calculations. It discusses the processes involved in the testing of the composite pressure vessel.


Author(s):  
Chaitanya Krishna Prasad Vallabh ◽  
Yubo Xiong ◽  
Xiayun Zhao

Abstract In-situ monitoring of a Laser Powder-Bed Fusion (LPBF) additive manufacturing process is crucial in enhancing the process efficiency and ensuring the built part integrity. In this work, we present an in-situ monitoring method using an off-axis camera for monitoring layer-wise process anomalies. The in-situ monitoring is performed with a spatial resolution of 512 × 512 pixels, with each pixel representing 250 × 250 μm and a relatively high data acquisition rate of 500 Hz. An experimental study is conducted by using the developed in-situ off-axis method for monitoring the build process for a standard tensile bar. Real-time video data is acquired for each printed layer. Data analytics methods are developed to identify layer-wise anomalies, observe powder bed characteristics, reconstruct 3D part structure, and track the spatter dynamics. A deep neural network architecture is trained using the acquired layer-wise images and tested by images embedded with artificial anomalies. The real-time video data is also used to perform a preliminary spatter analysis along the laser scan path. The developed methodology is aimed to extract as much information as possible from a single set of camera video data. It will provide the AM community with an efficient and capable process monitoring tool for process control and quality assurance while using LPBF to produce high-standard components in industrial (such as, aerospace and biomedical industries) applications.


Sign in / Sign up

Export Citation Format

Share Document