scholarly journals Multi-Scale DenseNets-Based Aircraft Detection from Remote Sensing Images

Sensors ◽  
2019 ◽  
Vol 19 (23) ◽  
pp. 5270
Author(s):  
Yantian Wang ◽  
Haifeng Li ◽  
Peng Jia ◽  
Guo Zhang ◽  
Taoyang Wang ◽  
...  

Deep learning-based aircraft detection methods have been increasingly implemented in recent years. However, due to the multi-resolution imaging modes, aircrafts in different images show very wide diversity on size, view and other visual features, which brings great challenges to detection. Although standard deep convolution neural networks (DCNN) can extract rich semantic features, they destroy the bottom-level location information. The features of small targets may also be submerged by redundant top-level features, resulting in poor detection. To address these problems, we proposed a compact multi-scale dense convolutional neural network (MS-DenseNet) for aircraft detection in remote sensing images. Herein, DenseNet was utilized for feature extraction, which enhances the propagation and reuse of the bottom-level high-resolution features. Subsequently, we combined feature pyramid network (FPN) with DenseNet to form a MS-DenseNet for learning multi-scale features, especially features of small objects. Finally, by compressing some of the unnecessary convolution layers of each dense block, we designed three new compact architectures: MS-DenseNet-41, MS-DenseNet-65, and MS-DenseNet-77. Comparative experiments showed that the compact MS-DenseNet-65 obtained a noticeable improvement in detecting small aircrafts and achieved state-of-the-art performance with a recall of 94% and an F1-score of 92.7% and cost less computational time. Furthermore, the experimental results on robustness of UCAS-AOD and RSOD datasets also indicate the good transferability of our method.

2020 ◽  
Vol 12 (5) ◽  
pp. 872 ◽  
Author(s):  
Ronghua Shang ◽  
Jiyu Zhang ◽  
Licheng Jiao ◽  
Yangyang Li ◽  
Naresh Marturi ◽  
...  

Semantic segmentation of high-resolution remote sensing images is highly challenging due to the presence of a complicated background, irregular target shapes, and similarities in the appearance of multiple target categories. Most of the existing segmentation methods that rely only on simple fusion of the extracted multi-scale features often fail to provide satisfactory results when there is a large difference in the target sizes. Handling this problem through multi-scale context extraction and efficient fusion of multi-scale features, in this paper we present an end-to-end multi-scale adaptive feature fusion network (MANet) for semantic segmentation in remote sensing images. It is a coding and decoding structure that includes a multi-scale context extraction module (MCM) and an adaptive fusion module (AFM). The MCM employs two layers of atrous convolutions with different dilatation rates and global average pooling to extract context information at multiple scales in parallel. MANet embeds the channel attention mechanism to fuse semantic features. The high- and low-level semantic information are concatenated to generate global features via global average pooling. These global features are used as channel weights to acquire adaptive weight information of each channel by the fully connected layer. To accomplish an efficient fusion, these tuned weights are applied to the fused features. Performance of the proposed method has been evaluated by comparing it with six other state-of-the-art networks: fully convolutional networks (FCN), U-net, UZ1, Light-weight RefineNet, DeepLabv3+, and APPD. Experiments performed using the publicly available Potsdam and Vaihingen datasets show that the proposed MANet significantly outperforms the other existing networks, with overall accuracy reaching 89.4% and 88.2%, respectively and with average of F1 reaching 90.4% and 86.7% respectively.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Liming Zhou ◽  
Chang Zheng ◽  
Haoxin Yan ◽  
Xianyu Zuo ◽  
Baojun Qiao ◽  
...  

Target detection in remote sensing images is very challenging research. Followed by the recent development of deep learning, the target detection algorithm has obtained large and fast growth. However, in the application of remote sensing images, due to the small target, wide range, small texture, and complex background, the existing target detection methods cannot achieve people’s hope. In this paper, a target detection algorithm named IR-PANet for remote sensing images of an automobile is proposed. In the backbone network CSPDarknet53, SPP is used to strengthen the learning content. Then, IR-PANet is used as the neck network. After the upper sampling, depthwise separable convolution is used to greatly avoid the lack of small target feature information in the convolution of the shallow network and increase the semantic information in the high-level network. Finally, Gamma correction is used to preprocess the image before image training, which effectively reduces the interference of shadow and other factors on training. The experiment proves that the method has a better effect on small targets obscured by shadows and under the color similar to the background of the picture, and the accuracy is significantly improved based on the original algorithm.


2021 ◽  
Vol 10 (7) ◽  
pp. 488
Author(s):  
Peng Li ◽  
Dezheng Zhang ◽  
Aziguli Wulamu ◽  
Xin Liu ◽  
Peng Chen

A deep understanding of our visual world is more than an isolated perception on a series of objects, and the relationships between them also contain rich semantic information. Especially for those satellite remote sensing images, the span is so large that the various objects are always of different sizes and complex spatial compositions. Therefore, the recognition of semantic relations is conducive to strengthen the understanding of remote sensing scenes. In this paper, we propose a novel multi-scale semantic fusion network (MSFN). In this framework, dilated convolution is introduced into a graph convolutional network (GCN) based on an attentional mechanism to fuse and refine multi-scale semantic context, which is crucial to strengthen the cognitive ability of our model Besides, based on the mapping between visual features and semantic embeddings, we design a sparse relationship extraction module to remove meaningless connections among entities and improve the efficiency of scene graph generation. Meanwhile, to further promote the research of scene understanding in remote sensing field, this paper also proposes a remote sensing scene graph dataset (RSSGD). We carry out extensive experiments and the results show that our model significantly outperforms previous methods on scene graph generation. In addition, RSSGD effectively bridges the huge semantic gap between low-level perception and high-level cognition of remote sensing images.


2021 ◽  
Vol 13 (3) ◽  
pp. 433
Author(s):  
Junge Shen ◽  
Tong Zhang ◽  
Yichen Wang ◽  
Ruxin Wang ◽  
Qi Wang ◽  
...  

Remote sensing images contain complex backgrounds and multi-scale objects, which pose a challenging task for scene classification. The performance is highly dependent on the capacity of the scene representation as well as the discriminability of the classifier. Although multiple models possess better properties than a single model on these aspects, the fusion strategy for these models is a key component to maximize the final accuracy. In this paper, we construct a novel dual-model architecture with a grouping-attention-fusion strategy to improve the performance of scene classification. Specifically, the model employs two different convolutional neural networks (CNNs) for feature extraction, where the grouping-attention-fusion strategy is used to fuse the features of the CNNs in a fine and multi-scale manner. In this way, the resultant feature representation of the scene is enhanced. Moreover, to address the issue of similar appearances between different scenes, we develop a loss function which encourages small intra-class diversities and large inter-class distances. Extensive experiments are conducted on four scene classification datasets include the UCM land-use dataset, the WHU-RS19 dataset, the AID dataset, and the OPTIMAL-31 dataset. The experimental results demonstrate the superiority of the proposed method in comparison with the state-of-the-arts.


Author(s):  
P. L. Arun ◽  
R Mathusoothana S Kumar

AbstractOcclusion removal is a significant problem to be resolved in a remote traffic control system to enhance road safety. However, the conventional techniques do not recognize traffic signs well due to the vehicles are occluded. Besides occlusion removal was not performed in existing techniques with a less amount of time. In order to overcome such limitations, Non-linear Gaussian Bilateral Filtered Sorenson–Dice Exemplar Image Inpainting Based Bayes Conditional Probability (NGBFSEII-BCP) Method is proposed. Initially, a number of remote sensing images are taken as input from Highway Traffic Dataset. Then, the NGBFSEII-BCP method applies the Non-Linear Gaussian Bilateral Filtering (NGBF) algorithm for removing the noise pixels in input images. After preprocessing, the NGBFSEII-BCP method is used to remove the occlusion in the input images. Finally, NGBFSEII-BCP Method applies Bayes conditional probability to find operation status and thereby gets higher road safety using remote sensing images. The technique conducts the simulation evaluation using metrics such as peak signal to noise ratio, computational time, and detection accuracy. The simulation result illustrates that the NGBFSEII-BCP Method increases the detection accuracy by 20% and reduces the computation time by 32% as compared to state-of-the-art works.


2021 ◽  
Author(s):  
Xuyang Teng ◽  
Yiming Pan ◽  
Meilin He ◽  
Meihua Bi ◽  
Zhaoyang Qiu ◽  
...  

Sensors ◽  
2018 ◽  
Vol 18 (2) ◽  
pp. 498 ◽  
Author(s):  
Hong Zhu ◽  
Xinming Tang ◽  
Junfeng Xie ◽  
Weidong Song ◽  
Fan Mo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document