scholarly journals Solar-Supplied Satellite Internet Access Point for the Internet of Things in Remote Areas

Sensors ◽  
2020 ◽  
Vol 20 (5) ◽  
pp. 1409
Author(s):  
Angus Wong ◽  
Yan Tai Chow

As satellite communications provide ubiquitous coverage, they play a key role in providing Internet connectivity in remote or marginalized areas, so as to enable the vision of a truly global connectivity of the Internet of Things (IoT). However, these areas often lack reliable electricity supply. Thus, this paper proposes a satellite internet access point powered by solar energy, so that a stable Internet connection can be provided. The access point provides Wi-Fi coverage so that sensors, IoT, and devices can connect to the access point using the Wi-Fi, a common wireless technology. Our design took some cost-saving measures to make it affordable and selected the components that require minimal maintenance operations. The satellite access point costs about USD $500, and can provide four days of Internet connectivity without solar energy.

CAHAYAtech ◽  
2020 ◽  
Vol 9 (1) ◽  
Author(s):  
Adetya Windiarto Makhmud ◽  
Tutus Praningki ◽  
Ira Luvi Indah

Drying clothes is one of the daily activities of people who use solar energy. With these conditions, people are very dependent on weather conditions that are sometimes erratic. One of the right ways is by utilizing technology, namely using an automatic clothesline using a Wemos D1Mini microcontroller, equipped with an LDR sensor that will read light intensity and the DHT11 sensor will read humidity and temperature around the environment. This tool is also based on the Internet of Things which can be accessed from anywhere as long as it is connected to the internet. Keyword: Microcontroller, LDR sensor, DHT11 sensor, Internet of Things.


Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 2744 ◽  
Author(s):  
Dmitry Bankov ◽  
Evgeny Khorov ◽  
Andrey Lyakhov ◽  
Ekaterina Stepanova ◽  
Le Tian ◽  
...  

Wi-Fi HaLow is an adaptation of the widespread Wi-Fi technology for the Internet of Things scenarios. Such scenarios often involve numerous wireless stations connected to a shared channel, and contention for the channel significantly affects the performance in such networks. Wi-Fi HaLow contains numerous solutions aimed at handling the contention between stations, two of which, namely, the Centralized Authentication Control (CAC) and the Distributed Authentication Control (DAC), address the contention reduction during the link set-up process. The link set-up process is special because the access point knows nothing of the connecting stations and its means of control of these stations are very limited. While DAC is self-adaptive, CAC does require an algorithm to dynamically control its parameters. Being just a framework, the Wi-Fi HaLow standard neither specifies such an algorithm nor recommends which protocol, CAC or DAC, is more suitable in a given situation. In this paper, we solve both issues by developing a novel robust close-to-optimal algorithm for CAC and compare CAC and DAC in a vast set of experiments.


2021 ◽  
Vol 11 (4) ◽  
pp. 14-41
Author(s):  
Ishtiaq Ahammad ◽  
Ashikur Rahman Khan ◽  
Zayed Us Salehin

The internet of things (IoT) offers a range of benefits for its users, ranging from quicker and more precise perception of our ecosystem to more cost-effective monitoring of manufacturing applications, by taking internet access to the things. Due to the ubiquitous existence of the internet, there's been an increasing pace in the IoT. Such a growing pace has brought about the term of IoT ecosystem. This exponential growing IoT ecosystem will encounter several challenges in its path. Computing domains were used from very initial stage to assist the IoT ecosystem and mitigate those challenges. To understand the impact of computing domains in IoT ecosystem, this paper performs the elaborative study on cloud, fog, roof, and dew computing including their interaction, benefits, and limitations in IoT ecosystem. The brief comparative analysis on these four computing domains are then performed. The impact of internet and offline computing on these computing domains are then analyzed in depth. Finally, this paper presents the suggestions of potential appropriate computing domain strategies for IoT ecosystems.


2018 ◽  
Vol 7 (4.44) ◽  
pp. 172
Author(s):  
Erfan Rohadi ◽  
Raka Admiral Abdurrahman ◽  
Ekojono . ◽  
Rosa Andrie Asmara ◽  
Indrazno Siradjuddin ◽  
...  

Recently, The Internet of Things (IoT) has been implemented and become an interesting topic for discussion. IoT is a method that aims to maximize the benefits of Internet connectivity to transfer and process data or information through an internet network wirelessly, virtual and autonomous. One of the IoT's utilization is automation system. The automation system generally uses a timer for the plant watering process. The use of timers aims to water the plants routinely without human assistance. The development of this automation system begins with the making of the prototype of chili land in the field 5 x 2.5 meters, then compile the required components and how it works. Further programming of sensors to Raspberry Pi as a controller in the system based on the conditions that have been set and changes in temperature received by the sensor. As a result, the system has been successfully done automatic watering, both on a regular basis (at 06.00 and 18.00) and cooling watering. Cooling is done if the temperature exceeds more than 30 degrees Celsius. The automation system promises to be applied to the utilization of land around the house.  


MACRo 2015 ◽  
2015 ◽  
Vol 1 (1) ◽  
pp. 25-36
Author(s):  
Béla Genge ◽  
Călin Enăchescu

AbstractThe expansion of Internet has led to a variety of directly accessible devices and services. Nowadays, companies tend to increase the number of Internetfacing services in order to ensure higher visibility, and accessibility towards end-users. Nonetheless, this profound expansion towards an “Internet of Things” brings new opportunities to malicious actors. As a result, novel cyber-physical attacks bring new challenges to systems administrators in order to accommodate traditional user requests with security prerequisites. Therefore, in this paper we propose a novel approach for historical Internet connectivity assessment of services. The technique uses the output of the popular Shodan search engine to infer the lifetime of different Internet-facing services. Experimental results conducted on IP address blocks attributed to six different institutions distributed across four sectors (university, telecommunications, banking, and power) show different possible service lifetime patterns.


2019 ◽  
Author(s):  
Arthur Brito Cosmi ◽  
Vinicius F. S. Mota

With the growth of devices connected to the Internet, several application layer protocols specific for the Internet of Things (IoT) appear every day. This high number of protocols bring doubts to developers about what to use in their projects. This work aims to assist developers in the decision making in their IoT projects. This work presents a qualitative analysis of the MQTT, MQTT-SN, CoAP and AMQP protocols. In a qualitative way, we analyzed thedomains of application and requirements of the applications to map the protocol choice. After that, the MQTT and CoAP protocols were analyzed using devices with low processing and memory capabilities. Results show that MQTT outperforms CoAP when there are several other devices accessing the same access point.


2021 ◽  
Vol 3 (2) ◽  
pp. 243-252
Author(s):  
Nestiara Lidya Kakihary

Internet of Things is a concept where internet connectivity can exchange information with one another with the existing devices around it. IoT can help humans in their daily activities. In general, Internet of Things-based devices can perform controlling and scheduling. In this research, an analysis of the level of power saving using smart lamp and smart plug devices based on the Internet of Things will be carried out. The analysis carried out in this study used the PIECES method which is a framework that can classify a problem, opportunity, and directives. Research on the efficiency of electricity savings based on IoT devices will be supported using devices and applications from Bardi Smart Home. In addition to the PIECES method, this analysis and research is supported by using the IoT framework: Conceptual Framework, and will be supported by IoT-based devices from Bardi Smart Home.    


2020 ◽  
Author(s):  
Tanweer Alam

<p><a><i>The wireless communication is making it easier for smart devices to communicate with one another in terms of the network of the Internet of Things. Smart devices are automatically linked and built up a network on their own. But there are more obstacles to safe access within the network itself. Mobile devices such as smart home automation access point, smart washing machines, mobile boards, temperature sensors, color-changing smart lighting, smartphones, wearable devices, and smart appliances, etc. are widespread in our daily lives and is becoming valuable tools with wireless communication abilities that are using specific wireless standards that are commonly used with IEEE 802.11 access points. On the realism of the Internet, security has been perceived as a prominent inhibitor of embracing the cloud paradigm. It is resource storage and management that may lay in any since the cloud environment is a distributed architecture, which place of the world, many concerns have been raised over its vulnerabilities, security threats and challenges. The involvement of various parties has widened these concerns based on each party's perspective and objective. The Cloud point of view we mainly discuss the causes of obstacles and challenges related to security, reliability, privacy and service availability. The wireless communication Security has been raised as one of the most critical issues of cloud computing where resolving such an issue would result in constant growth in the cloud’s use and popularity. Our purpose of this study is to create a framework of mobile ad hoc network mobility model using cloud computing for providing secure communication among smart devices network for the internet of things in 5G heterogeneous networks. Our main contribution links a new methodology for providing secure communication on the internet of smart devices in 5G. Our methodology uses the correct and efficient simulation of the desired study and can be implemented in a framework of the Internet of Things in 5G.</i></a></p>


2018 ◽  
Vol 5 (6) ◽  
pp. 711
Author(s):  
Erfan Rohadi ◽  
Raka Admiral Abdurrahman ◽  
Ekojono Ekojono ◽  
Rosa Andrie Asmara ◽  
Indrazno Siradjuddin ◽  
...  

<p class="Judul2"><strong>Abstrak</strong></p><p class="Judul2"><em>         Internet of Things</em> (IoT) mengalami perkembangan yang sangat pesat dan menjadi topik yang layak untuk diperbincangkan dan dikembangkan saat ini. IoT merupakan sebuah metode yang bertujuan untuk memaksimalkan manfaat dari konektivitas internet untuk melakukan transfer dan pemrosesan data- data atau informasi melalui sebuah jaringan internet secara nirkabel, <em>virtual</em> dan otonom. Salah satu pemanfaatan IoT adalah sistem automasi. Sistem automasi pada umumnya menggunakan pengatur waktu (<em>timer</em>) untuk proses penyiraman tanaman. Penggunaan timer bertujuan agar penyiraman tanaman berjalan secara rutin tanpa bantuan manusia.</p><p class="Judul2">         Pengembangan sistem automasi ini dimulai dengan pembuatan prototype lahan tanaman cabai rawit di lahan 5 x 2.5 meter, kemudian menyusun komponen-komponen yang dibutuhkan serta cara kerjanya. Selanjutnya dilakukan pemrograman sensor-sensor terhadap Raspberry Pi sebagai pengontrol dalam sistem tersebut berdasarkan kondisi yang telah diatur dan perubahan temperatur yang diterima oleh sensor. Setelah semua dilakukan, maka dilakukan pengujian terhadap sistem tersebut.</p><p class="Judul2">         Berdasarkan pengujian yang telah dilakukan, diketahui telah berhasil dilakukan penyiraman otomatis, baik secara reguler (pukul 06.00 dan 18.00) maupun penyiraman pendinginan. Pendinginan dilakukan jika suhu lebih dari 30 derajat celcius. Sistem automasi yang dikembangkan dengan uji tanaman cabai rawit menjanjikan untuk diterapkan pada pemanfaatan lahan di sekitar rumah.</p><p class="Judul2"> </p><p class="Judul2"><strong><em>Abstract</em><em></em></strong></p><p class="Abstract"><em>         Recently, The Internet of Things (IoT) has been implemented and become an interesting topic for discussion. IoT is a method that aims to maximize the benefits of Internet connectivity to transfer and process data or information through an internet network wirelessly, virtual and autonomous. One of the IoT's utilization is automation system. The automation system generally uses a timer for the plant watering process. The use of timers aims to water the plants routinely without human assistance.</em></p><p class="Abstract"><em>        The development of this automation system begins with the making of the prototype of chili land in the field 5 x 2.5 meters, then compile the required components and how it works. Further programming of sensors to Raspberry Pi as a controller in the system based on the conditions that have been set and changes in temperature received by the sensor.</em></p><p class="Judul2"><em>       As a result, the system has been successfully done automatic watering, both on a regular basis (at 06.00 and 18.00) and cooling watering. Cooling is done if the temperature exceeds more than 30 degrees Celsius. The automation system promises to be applied to the utilization of land around the house.</em></p>


Sign in / Sign up

Export Citation Format

Share Document