scholarly journals The CSP-Based New Features Plus Non-Convex Log Sparse Feature Selection for Motor Imagery EEG Classification

Sensors ◽  
2020 ◽  
Vol 20 (17) ◽  
pp. 4749
Author(s):  
Shaorong Zhang ◽  
Zhibin Zhu ◽  
Benxin Zhang ◽  
Bao Feng ◽  
Tianyou Yu ◽  
...  

The common spatial pattern (CSP) is a very effective feature extraction method in motor imagery based brain computer interface (BCI), but its performance depends on the selection of the optimal frequency band. Although a lot of research works have been proposed to improve CSP, most of these works have the problems of large computation costs and long feature extraction time. To this end, three new feature extraction methods based on CSP and a new feature selection method based on non-convex log regularization are proposed in this paper. Firstly, EEG signals are spatially filtered by CSP, and then three new feature extraction methods are proposed. We called them CSP-wavelet, CSP-WPD and CSP-FB, respectively. For CSP-Wavelet and CSP-WPD, the discrete wavelet transform (DWT) or wavelet packet decomposition (WPD) is used to decompose the spatially filtered signals, and then the energy and standard deviation of the wavelet coefficients are extracted as features. For CSP-FB, the spatially filtered signals are filtered into multiple bands by a filter bank (FB), and then the logarithm of variances of each band are extracted as features. Secondly, a sparse optimization method regularized with a non-convex log function is proposed for the feature selection, which we called LOG, and an optimization algorithm for LOG is given. Finally, ensemble learning is used for secondary feature selection and classification model construction. Combing feature extraction and feature selection methods, a total of three new EEG decoding methods are obtained, namely CSP-Wavelet+LOG, CSP-WPD+LOG, and CSP-FB+LOG. Four public motor imagery datasets are used to verify the performance of the proposed methods. Compared to existing methods, the proposed methods achieved the highest average classification accuracy of 88.86, 83.40, 81.53, and 80.83 in datasets 1–4, respectively. The feature extraction time of CSP-FB is the shortest. The experimental results show that the proposed methods can effectively improve the classification accuracy and reduce the feature extraction time. With comprehensive consideration of classification accuracy and feature extraction time, CSP-FB+LOG has the best performance and can be used for the real-time BCI system.

2012 ◽  
Vol 532-533 ◽  
pp. 1191-1195 ◽  
Author(s):  
Zhen Yan Liu ◽  
Wei Ping Wang ◽  
Yong Wang

This paper introduces the design of a text categorization system based on Support Vector Machine (SVM). It analyzes the high dimensional characteristic of text data, the reason why SVM is suitable for text categorization. According to system data flow this system is constructed. This system consists of three subsystems which are text representation, classifier training and text classification. The core of this system is the classifier training, but text representation directly influences the currency of classifier and the performance of the system. Text feature vector space can be built by different kinds of feature selection and feature extraction methods. No research can indicate which one is the best method, so many feature selection and feature extraction methods are all developed in this system. For a specific classification task every feature selection method and every feature extraction method will be tested, and then a set of the best methods will be adopted.


2022 ◽  
Vol 2022 ◽  
pp. 1-12
Author(s):  
Yuan Tang ◽  
Zining Zhao ◽  
Shaorong Zhang ◽  
Zhi Li ◽  
Yun Mo ◽  
...  

Feature extraction and selection are important parts of motor imagery electroencephalogram (EEG) decoding and have always been the focus and difficulty of brain-computer interface (BCI) system research. In order to improve the accuracy of EEG decoding and reduce model training time, new feature extraction and selection methods are proposed in this paper. First, a new spatial-frequency feature extraction method is proposed. The original EEG signal is preprocessed, and then the common spatial pattern (CSP) is used for spatial filtering and dimensionality reduction. Finally, the filter bank method is used to decompose the spatially filtered signals into multiple frequency subbands, and the logarithmic band power feature of each frequency subband is extracted. Second, to select the subject-specific spatial-frequency features, a hybrid feature selection method based on the Fisher score and support vector machine (SVM) is proposed. The Fisher score of each feature is calculated, then a series of threshold parameters are set to generate different feature subsets, and finally, SVM and cross-validation are used to select the optimal feature subset. The effectiveness of the proposed method is validated using two sets of publicly available BCI competition data and a set of self-collected data. The total average accuracy of the three data sets achieved by the proposed method is 82.39%, which is 2.99% higher than the CSP method. The experimental results show that the proposed method has a better classification effect than the existing methods, and at the same time, feature extraction and feature selection time also have greater advantages.


2019 ◽  
Vol 21 (9) ◽  
pp. 631-645 ◽  
Author(s):  
Saeed Ahmed ◽  
Muhammad Kabir ◽  
Zakir Ali ◽  
Muhammad Arif ◽  
Farman Ali ◽  
...  

Aim and Objective: Cancer is a dangerous disease worldwide, caused by somatic mutations in the genome. Diagnosis of this deadly disease at an early stage is exceptionally new clinical application of microarray data. In DNA microarray technology, gene expression data have a high dimension with small sample size. Therefore, the development of efficient and robust feature selection methods is indispensable that identify a small set of genes to achieve better classification performance. Materials and Methods: In this study, we developed a hybrid feature selection method that integrates correlation-based feature selection (CFS) and Multi-Objective Evolutionary Algorithm (MOEA) approaches which select the highly informative genes. The hybrid model with Redial base function neural network (RBFNN) classifier has been evaluated on 11 benchmark gene expression datasets by employing a 10-fold cross-validation test. Results: The experimental results are compared with seven conventional-based feature selection and other methods in the literature, which shows that our approach owned the obvious merits in the aspect of classification accuracy ratio and some genes selected by extensive comparing with other methods. Conclusion: Our proposed CFS-MOEA algorithm attained up to 100% classification accuracy for six out of eleven datasets with a minimal sized predictive gene subset.


2021 ◽  
Vol 25 (1) ◽  
pp. 21-34
Author(s):  
Rafael B. Pereira ◽  
Alexandre Plastino ◽  
Bianca Zadrozny ◽  
Luiz H.C. Merschmann

In many important application domains, such as text categorization, biomolecular analysis, scene or video classification and medical diagnosis, instances are naturally associated with more than one class label, giving rise to multi-label classification problems. This has led, in recent years, to a substantial amount of research in multi-label classification. More specifically, feature selection methods have been developed to allow the identification of relevant and informative features for multi-label classification. This work presents a new feature selection method based on the lazy feature selection paradigm and specific for the multi-label context. Experimental results show that the proposed technique is competitive when compared to multi-label feature selection techniques currently used in the literature, and is clearly more scalable, in a scenario where there is an increasing amount of data.


Author(s):  
B. Venkatesh ◽  
J. Anuradha

In Microarray Data, it is complicated to achieve more classification accuracy due to the presence of high dimensions, irrelevant and noisy data. And also It had more gene expression data and fewer samples. To increase the classification accuracy and the processing speed of the model, an optimal number of features need to extract, this can be achieved by applying the feature selection method. In this paper, we propose a hybrid ensemble feature selection method. The proposed method has two phases, filter and wrapper phase in filter phase ensemble technique is used for aggregating the feature ranks of the Relief, minimum redundancy Maximum Relevance (mRMR), and Feature Correlation (FC) filter feature selection methods. This paper uses the Fuzzy Gaussian membership function ordering for aggregating the ranks. In wrapper phase, Improved Binary Particle Swarm Optimization (IBPSO) is used for selecting the optimal features, and the RBF Kernel-based Support Vector Machine (SVM) classifier is used as an evaluator. The performance of the proposed model are compared with state of art feature selection methods using five benchmark datasets. For evaluation various performance metrics such as Accuracy, Recall, Precision, and F1-Score are used. Furthermore, the experimental results show that the performance of the proposed method outperforms the other feature selection methods.


Sensors ◽  
2019 ◽  
Vol 19 (4) ◽  
pp. 916 ◽  
Author(s):  
Wen Cao ◽  
Chunmei Liu ◽  
Pengfei Jia

Aroma plays a significant role in the quality of citrus fruits and processed products. The detection and analysis of citrus volatiles can be measured by an electronic nose (E-nose); in this paper, an E-nose is employed to classify the juice which is stored for different days. Feature extraction and classification are two important requirements for an E-nose. During the training process, a classifier can optimize its own parameters to achieve a better classification accuracy but cannot decide its input data which is treated by feature extraction methods, so the classification result is not always ideal. Label consistent KSVD (L-KSVD) is a novel technique which can extract the feature and classify the data at the same time, and such an operation can improve the classification accuracy. We propose an enhanced L-KSVD called E-LCKSVD for E-nose in this paper. During E-LCKSVD, we introduce a kernel function to the traditional L-KSVD and present a new initialization technique of its dictionary; finally, the weighted coefficients of different parts of its object function is studied, and enhanced quantum-behaved particle swarm optimization (EQPSO) is employed to optimize these coefficients. During the experimental section, we firstly find the classification accuracy of KSVD, and L-KSVD is improved with the help of the kernel function; this can prove that their ability of dealing nonlinear data is improved. Then, we compare the results of different dictionary initialization techniques and prove our proposed method is better. Finally, we find the optimal value of the weighted coefficients of the object function of E-LCKSVD that can make E-nose reach a better performance.


Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 2910
Author(s):  
Kei Suzuki ◽  
Tipporn Laohakangvalvit ◽  
Ryota Matsubara ◽  
Midori Sugaya

In human emotion estimation using an electroencephalogram (EEG) and heart rate variability (HRV), there are two main issues as far as we know. The first is that measurement devices for physiological signals are expensive and not easy to wear. The second is that unnecessary physiological indexes have not been removed, which is likely to decrease the accuracy of machine learning models. In this study, we used single-channel EEG sensor and photoplethysmography (PPG) sensor, which are inexpensive and easy to wear. We collected data from 25 participants (18 males and 7 females) and used a deep learning algorithm to construct an emotion classification model based on Arousal–Valence space using several feature combinations obtained from physiological indexes selected based on our criteria including our proposed feature selection methods. We then performed accuracy verification, applying a stratified 10-fold cross-validation method to the constructed models. The results showed that model accuracies are as high as 90% to 99% by applying the features selection methods we proposed, which suggests that a small number of physiological indexes, even from inexpensive sensors, can be used to construct an accurate emotion classification model if an appropriate feature selection method is applied. Our research results contribute to the improvement of an emotion classification model with a higher accuracy, less cost, and that is less time consuming, which has the potential to be further applied to various areas of applications.


Author(s):  
Gang Liu ◽  
Chunlei Yang ◽  
Sen Liu ◽  
Chunbao Xiao ◽  
Bin Song

A feature selection method based on mutual information and support vector machine (SVM) is proposed in order to eliminate redundant feature and improve classification accuracy. First, local correlation between features and overall correlation is calculated by mutual information. The correlation reflects the information inclusion relationship between features, so the features are evaluated and redundant features are eliminated with analyzing the correlation. Subsequently, the concept of mean impact value (MIV) is defined and the influence degree of input variables on output variables for SVM network based on MIV is calculated. The importance weights of the features described with MIV are sorted by descending order. Finally, the SVM classifier is used to implement feature selection according to the classification accuracy of feature combination which takes MIV order of feature as a reference. The simulation experiments are carried out with three standard data sets of UCI, and the results show that this method can not only effectively reduce the feature dimension and high classification accuracy, but also ensure good robustness.


Sign in / Sign up

Export Citation Format

Share Document