sun photometer
Recently Published Documents


TOTAL DOCUMENTS

350
(FIVE YEARS 63)

H-INDEX

40
(FIVE YEARS 4)

2022 ◽  
Vol 14 (2) ◽  
pp. 266
Author(s):  
Yuanxin Liang ◽  
Huizheng Che ◽  
Hong Wang ◽  
Wenjie Zhang ◽  
Lei Li ◽  
...  

Aerosols can affect vertical thermal structure during heavily polluted episodes (HPEs). Here, we selected four typical HPEs in 2018, which were further subdivided into dust and haze events. The vertical distribution of aerosols extinction coefficient (EC) and variations in columnar optical properties were investigated based on sun-photometer and Lidar observation at an urban site in Beijing. The vertical characteristics in shortwave radiative heating rate (HR) of aerosols were studied using NASA/Goddard radiative transfer model along with observational data. In the haze episode, EC layer is less than 1.5 km and shows strong scattering, with single-scattering albedo (SSA440nm) of ~0.97. The heating effects are observed at the middle and upper atmosphere, and slight heating effects are found at the lower layer. The mean HR within 1.5 km can be up to 16.3 K day−1 with EC of 1.27 km−1, whereas the HR within 0.5 km is only 1.3 K day−1. In the dust episode, dust aerosols present the absorption with SSA440nm of ~0.88, which would heat the lower atmosphere to promote vertical turbulence, and the height of EC layer can be up to 2.0–3.5 km. In addition, the strong heating effects of dust layer produced cooling effects near the surface. Therefore, the accurate measurement of aerosols optical properties in HPEs is of great significance for modeling aerosols direct radiative effects.


2022 ◽  
Author(s):  
Javier Vaquero-Martínez ◽  
André Felipe Bagorrilha ◽  
Manuel Antón ◽  
Juan Carlos Antuña-Marrero ◽  
Victoria E. Cachorro

2021 ◽  
Vol 14 (1) ◽  
pp. 66
Author(s):  
Shuyu Chen ◽  
Yuan Li ◽  
Fengmei Cao ◽  
Yuxiang Zhang

Aerosol optical depth (AOD) is an important atmospheric correction parameter in remote sensing. In order to obtain AOD accurately, the surface-based automatic sun photometer needs to carry out calibration regularly. The normally used Langley method can be effective only when the AOD and the calibration coefficients of the instrument remain unchanged throughout the day. However, when observing the AOD with CE318 sun photometer in field environment, it was found that the AOD of silicon (Si) detector at 1020 nm and indium gallium arsenide (InGaAs) detector at 1639 nm was strongly influenced by temperature due to the large temperature difference at the Dunhuang site. Based on the corresponding relationship between AOD and wavelength, the model of the calibration coefficients varying with temperature was established by nonlinear regression method in field environment. By comparing the AOD before and after temperature correction with the theoretical one, the ratio of data with relative error (RE) less than 5% increased from 0.195 and 0.14 to 0.894 and 0.355, respectively. By this method, calibration can be carried out without the limit of constant AOD. In addition, it is simpler, more convenient, and less costly to perform temperature correction in a field environment than in a laboratory.


Atmosphere ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 21
Author(s):  
Ioana Elisabeta Popovici ◽  
Zhaoze Deng ◽  
Philippe Goloub ◽  
Xiangao Xia ◽  
Hongbin Chen ◽  
...  

We present the mapping at fine spatial scale of aerosol optical properties using a mobile laboratory equipped with LIDAR (Light Detection And Ranging), sun photometer and in situ instruments for performing on-road measurements. The mobile campaign was conducted from 9 May to 19 May 2017 and had the main objective of mapping the distribution of pollutants in the Beijing and North China Plain (NCP) region. The highest AOD (Aerosol Optical Depth) at 440 nm of 1.34 and 1.9 were recorded during two heavy pollution episodes on 18 May and 19 May 2017, respectively. The lowest Planetary Boundary Layer (PBL) heights (0.5–1.5 km) were recorded during the heavy pollution events, correlating with the highest AOD and southern winds. The transport of desert dust from the Gobi Desert was captured during the mobile measurements, impacting Beijing during 9–13 May 2017. Exploring the NCP outside Beijing provided datasets for regions with scarce ground measurements and allowed the mapping of high aerosol concentrations when passing polluted cities in the NCP (Baoding, Tianjin and Tangshan) and along the Binhai New Area. For the first time, we provide mass concentration profiles from the synergy of LIDAR, sun photometer and in situ measurements. The case study along the Binhai New Area revealed mean extinction coefficients of 0.14 ± 0.10 km−1 at 532 nm and a mass concentration of 80 ± 62 μg/m3 in the PBL (<2 km). The highest extinction (0.56 km−1) and mass concentrations (404 μg/m3) were found in the industrial Binhai New Area. The PM10 and PM2.5 fractions of the total mass concentration profiles were separated using the columnar size distribution, derived from the sun photometer measurements. This study offers unique mobile datasets of the aerosol optical properties in the NCP for future applications, such as satellite validation and air quality studies.


2021 ◽  
Vol 13 (22) ◽  
pp. 4585
Author(s):  
Cristobal Garrido ◽  
Felipe Toledo ◽  
Marcos Diaz ◽  
Roberto Rondanelli

We propose a monochromatic low-cost automatic sun photometer (LoCo-ASP) to perform distributed aerosol optical depth (AOD) measurements at the city scale. This kind of network could fill the gap between current automatic ground instruments—with good temporal resolution and accuracy, but few devices per city and satellite products—with global coverage, but lower temporal resolution and accuracy-. As a first approach, we consider a single equivalent wavelength around 408 nm. The cost of materials for the instrument is around 220 dollars. Moreover, we propose a calibration transfer for a pattern instrument, and estimate the uncertainties for several units and due to the internal differences and the calibration process. We achieve a max MAE of 0.026 for 38 sensors at 408 nm compared with AERONET Cimel; a mean standard deviation of 0.0062 among our entire sensor for measurement and a calibration uncertainty of 0.01. Finally, we perform city-scale measurements to show the dynamics of AOD. Our instrument can measure unsupervised, with an expected error for AOD between 0.02 and 0.03.


2021 ◽  
Vol 893 (1) ◽  
pp. 012052
Author(s):  
S D A Kusumaningtyas ◽  
E Aldrian ◽  
Suradi ◽  
M Ahmad ◽  
G D Krisnawan

Abstract Extreme biomass burning occurred in Jambi, Indonesia, in 2019 and coincided exacerbated with El Nino. Peak burning season was in September, with a total hotspot of 7034. Red sky has been reported on September 21 during the day. Sun photometer measurements in Jambi as one of the Aerosol Robotic Network (AERONET) stations in Indonesia from 1 to September 26, 2019, were used to investigate the red sky phenomenon. Assessment of aerosol optical properties and spectral variation analysis is conducted. The study reveals that the red sky occurred due to, firstly, very high aerosol loading with fine size particles were present. The aerosol optical depth (AOD) was 0.34 at 500 nm on a non-hazy day (early September) and increased sharply to 5.74 during a hazy day. A high level of fine-mode particle was indicated with Angstrom Exponent>1. Secondly, during September 23, only longer wavelengths of AOD were measured at 675, 870, 1020, and 1640 nm, while AOD in shorter wavelengths cannot be retrieved. Highest AOD on September 23 was 6.19 at 675 nm, which is associated with the red sky in the previous day. Thirdly, SSA was near 1, indicating purely aerosol scattering due to coagulated fine-mode particles due to high humidity.


2021 ◽  
Vol 21 (62) ◽  
pp. 201-219
Author(s):  
Ali Bayat ◽  
Ahmad Assar Enayati ◽  
Azimeh Toshani ◽  
◽  
◽  
...  

2021 ◽  
Author(s):  
Matthew S. Norgren ◽  
John Wood ◽  
K. Sebastian Schmidt ◽  
Bastiaan van Diedenhoven ◽  
Snorre A. Stamnes ◽  
...  

Abstract. This study develops the use of spectral total and diffuse irradiance measurements, made from a prototype hyperspectral total-diffuse Sunshine Pyranometer (SPN-S), to retrieve layer fine-mode aerosol (τaer) and total optical depths from airborne platforms. Additionally, we use spectral analysis in an attempt to partition the total optical depth it into its τaer and cirrus cloud optical depth (τcld) components in the absence of coarse-mode aerosols. Two retrieval methods are developed: one leveraging information in the diffuse irradiance, and the other using spectral characteristics of the transmitted direct beam, with each approach best suited for specific cloud and aerosol conditions. SPN-S has advantages over traditional sun-photometer systems including no moving parts and a low cost. However, a significant drawback of the instrument is that it is unable to measure the direct beam irradiance as accurately as sun-photometers. To compensate for the greater measurement uncertainty of the radiometric irradiances these retrieval techniques employ ratioed inputs or spectral information to reduce output uncertainty. This analysis uses irradiance measurements from SPN-S and the Solar Spectral Flux Radiometer (SSFR) aboard the National Aeronautics and Space Administration’s (NASA) P-3 aircraft during the 2018 deployment of the ObseRvations of Aerosols above CLouds and their intEractionS (ORACLES) campaign and the 2019 Cloud, Aerosol and Monsoon Processes Philippines Experiment (CAMP2Ex) mission to quantify above-aircraft cirrus τcld and derive vertical profiles of layer τaer. Validation of the τaer retrieval is accomplished by comparison with collocated measurements of direct solar irradiance made by the Sky-Scanning Sun-Tracking Atmospheric Research (4STAR) and in situ measurements of aerosol optical depth. For the aggregated 2018 ORACLES results, regression between the SPN-S based method and sun-photometer τaer values yield a slope of 0.96 with an R2 of 0.96, while the root-mean-square error (RMSE) is 3.0 × 10−2. When comparing the retrieved τaer to profiles of integrated in situ measurements of optical extinction, the slope, R2, and RMSE values for ORACLES are 0.90, 0.96, 3.4 × 10−2, and for CAMP2Ex are 0.94, 0.97, 3.4 × 10−2 respectively. This paper is a demonstration of methods for deriving cloud and aerosol optical properties in environments where both atmospheric constituents may be present. With improvements to the low-cost SPN-S radiometer instrument, it may be possible to extend these methods to a broader set of sampling applications, such as ground-based settings.


Atmosphere ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1226
Author(s):  
Lina Xun ◽  
Hui Lu ◽  
Congcong Qian ◽  
Yong Zhang ◽  
Shanshan Lyu ◽  
...  

We use two cloud screening methods—the clustering method and the multiplet method—to process the measurements of a sun photometer from March 2020 to April 2021 in Shouxian. The aerosol optical depth (AOD) and Angström parameters α and β are retrieved; variation characteristics and single scattering albedo are studied. The results show that: (1) The fitting coefficient of AOD retrieved by the two methods is 0.921, and the changing trend is consistent. The clustering method has fewer effective data points and days, reducing the overall average of AOD by 0.0542 (500 nm). (2) Diurnal variation of AOD can be divided into flat type, convex type, and concave type. Concave type and convex type occurred the most frequently, whereas flat type the least. (3) During observation, the overall average of AOD is 0.48, which is relatively high. Among them, AOD had a winter maximum (0.70), autumn and spring next (0.54 and 0.40), and a summer minimum (0.26). The variation trend of AOD and β is highly consistent, and the monthly mean of α is between 0.69 and 1.61, concerning mainly continental and urban aerosols. (4) Compared with others, the single scattering albedo in Shouxian is higher, reflecting strong scattering and weak aerosol absorption.


2021 ◽  
Vol 14 (9) ◽  
pp. 5939-5954
Author(s):  
Yun He ◽  
Yunfei Zhang ◽  
Fuchao Liu ◽  
Zhenping Yin ◽  
Yang Yi ◽  
...  

Abstract. The POLIPHON (polarization lidar photometer networking) method is a powerful pathway to retrieve the height profiles of dust-related particle mass and ice-nucleating particle (INP) concentrations. The conversion factors fitted from the sun photometer observation data are the major part of the POLIPHON computations, which can convert the polarization-lidar-derived dust extinction coefficients into dust-related particle mass and INP concentrations. For the central Chinese megacity of Wuhan (30.5∘ N, 114.4∘ E), located at the downstream area several thousands of kilometers far away from the source regions of Asian dust, dust particles always mix with other aerosols from local emissions. Therefore, very few dust case data sets can be available when using the column-integrated Ångström exponent (for 440–870 nm) <0.3 and aerosol optical depth (at 532 nm) >0.1 recorded by a sun photometer as the filtering criteria. Instead, we present another dust case data set screening scheme that applies the simultaneous polarization lidar observation to verify the occurrence of dust. Based on the 33 dust-intrusion days identified during 2011–2013, the extinction-to-volume (cv,d) and extinction-to-large particle (with radius >250 nm) number concentration (c250,d) conversion factors are determined to be (0.52±0.12)×10-12Mmm3m-3 and 0.19±0.05 Mm cm−3, respectively. The c250,d for Wuhan is 27 % larger than that observed at Lanzhou SACOL (36.0∘ N, 104.1∘ E), a site closer to the Gobi Desert, and tends to be closer to those observed in North Africa and the Middle East, indicating dust aerosols from these two sources are also possibly involved in the dust events observed over Wuhan. As a comparison, the conversion factor c290,c of 0.11±0.02Mmcm-3 for continental aerosol is much smaller than c250,d, indicating that there is no significant influence of urban aerosols on the retrievals of dust-related conversion factor over Wuhan. The conversion factors are applied in a dust event in Wuhan to reveal the typical dust-related immersion-mode INP concentration over East Asian cities. The proposed dust case data set screening scheme may potentially be extended to the other polluted city sites that are more influenced by mixed dust.


Sign in / Sign up

Export Citation Format

Share Document