scholarly journals Distance Measurements in UWB-Radio Localization Systems Corrected with a Feedforward Neural Network Model

Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2294
Author(s):  
Peter Krapež ◽  
Matjaž Vidmar ◽  
Marko Munih

An ultra-wideband (UWB) localization system is an alternative in a GPS-denied environment. However, a distance measurement with UWB modules using a two-way communication protocol induces an orientation-dependent error. Previous research studied this error by looking at parameters such as the received power and the channel response signal. In this paper, the neural network (NN) method for correcting the orientation-induced distance error without the need to calculate the signal strength, obtain the channel response or know any parameters of the antenna and the UWB modules is presented. The NN method utilizes only the measured distance and the tag orientation, and implements an NN model obtained by machine learning, using measurements at different distances and orientations of the two UWB modules. The verification of the experimental setup with 12 anchors and a tag shows that with the proposed NN method, 5 cm better root mean square error values (RMSEs) are obtained for the measured distance between the anchors and the tag compared to the calibration method that did not include orientation information. With the least-square estimator, 14 cm RMSE in 3D is obtained with the NN model corrected distances, with a 9 cm improvement compared to when raw distances are used. The method produces better results without the need to obtain the UWB module’s diagnostics parameters that are required to calculate the received signal strength or channel response, and in this way maintain the minimum packet size for the ranging protocol.

Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8204
Author(s):  
Milica Petrović ◽  
Maciej Ciężkowski ◽  
Sławomir Romaniuk ◽  
Adam Wolniakowski ◽  
Zoran Miljković

Positioning systems based on the lateration method utilize distance measurements and the knowledge of the location of the beacons to estimate the position of the target object. Although most of the global positioning techniques rely on beacons whose locations are known a priori, miscellaneous factors and disturbances such as obstacles, reflections, signal propagation speed, the orientation of antennas, measurement offsets of the beacons hardware, electromagnetic noise, or delays can affect the measurement accuracy. In this paper, we propose a novel hybrid calibration method based on Neural Networks (NN) and Apparent Beacon Position Estimation (ABPE) to improve the accuracy of a lateration positioning system. The main idea of the proposed method is to use a two-step position correction pipeline that first performs the ABPE step to estimate the perceived positions of the beacons that are used in the standard position estimation algorithm and then corrects these initial estimates by filtering them with a multi-layer feed-forward neural network in the second step. In order to find an optimal neural network, 16 NN architectures with 10 learning algorithms and 12 different activation functions for hidden layers were implemented and tested in the MATLAB environment. The best training outcomes for NNs were then employed in two real-world indoor scenarios: without and with obstacles. With the aim to validate the proposed methodology in a scenario where a fast set-up of the system is desired, we tested eight different uniform sampling patterns to establish the influence of the number of the training samples on the accuracy of the system. The experimental results show that the proposed hybrid NN-ABPE method can achieve a high level of accuracy even in scenarios when a small number of calibration reference points are measured.


Author(s):  
K. Gao ◽  
M.O. Ahmad ◽  
M.N.S. Swamy

Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 920
Author(s):  
Neha Chaudhary ◽  
Othman Isam Younus ◽  
Luis Nero Alves ◽  
Zabih Ghassemlooy ◽  
Stanislav Zvanovec ◽  
...  

The accuracy of the received signal strength-based visible light positioning (VLP) system in indoor applications is constrained by the tilt angles of transmitters (Txs) and receivers as well as multipath reflections. In this paper, for the first time, we show that tilting the Tx can be beneficial in VLP systems considering both line of sight (LoS) and non-line of sight transmission paths. With the Txs oriented towards the center of the receiving plane (i.e., the pointing center F), the received power level is maximized due to the LoS components on F. We also show that the proposed scheme offers a significant accuracy improvement of up to ~66% compared with a typical non-tilted Tx VLP at a dedicated location within a room using a low complex linear least square algorithm with polynomial regression. The effect of tilting the Tx on the lighting uniformity is also investigated and results proved that the uniformity achieved complies with the European Standard EN 12464-1. Furthermore, we show that the accuracy of VLP can be further enhanced with a minimum positioning error of 8 mm by changing the height of F.


2021 ◽  
Vol 13 (2) ◽  
pp. 274
Author(s):  
Guobiao Yao ◽  
Alper Yilmaz ◽  
Li Zhang ◽  
Fei Meng ◽  
Haibin Ai ◽  
...  

The available stereo matching algorithms produce large number of false positive matches or only produce a few true-positives across oblique stereo images with large baseline. This undesired result happens due to the complex perspective deformation and radiometric distortion across the images. To address this problem, we propose a novel affine invariant feature matching algorithm with subpixel accuracy based on an end-to-end convolutional neural network (CNN). In our method, we adopt and modify a Hessian affine network, which we refer to as IHesAffNet, to obtain affine invariant Hessian regions using deep learning framework. To improve the correlation between corresponding features, we introduce an empirical weighted loss function (EWLF) based on the negative samples using K nearest neighbors, and then generate deep learning-based descriptors with high discrimination that is realized with our multiple hard network structure (MTHardNets). Following this step, the conjugate features are produced by using the Euclidean distance ratio as the matching metric, and the accuracy of matches are optimized through the deep learning transform based least square matching (DLT-LSM). Finally, experiments on Large baseline oblique stereo images acquired by ground close-range and unmanned aerial vehicle (UAV) verify the effectiveness of the proposed approach, and comprehensive comparisons demonstrate that our matching algorithm outperforms the state-of-art methods in terms of accuracy, distribution and correct ratio. The main contributions of this article are: (i) our proposed MTHardNets can generate high quality descriptors; and (ii) the IHesAffNet can produce substantial affine invariant corresponding features with reliable transform parameters.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Yuxiang Wang ◽  
Zhangwei Chen ◽  
Hongfei Zu ◽  
Xiang Zhang ◽  
Chentao Mao ◽  
...  

The positioning accuracy of a robot is of great significance in advanced robotic manufacturing systems. This paper proposes a novel calibration method for improving robot positioning accuracy. First of all, geometric parameters are identified on the basis of the product of exponentials (POE) formula. The errors of the reduction ratio and the coupling ratio are identified at the same time. Then, joint stiffness identification is carried out by adding a load to the end-effector. Finally, residual errors caused by nongeometric parameters are compensated by a multilayer perceptron neural network (MLPNN) based on beetle swarm optimization algorithm. The calibration is implemented on a SIASUN SR210D robot manipulator. Results show that the proposed method possesses better performance in terms of faster convergence and higher precision.


2010 ◽  
Vol 44-47 ◽  
pp. 3289-3293
Author(s):  
Jing Wen Tian ◽  
Mei Juan Gao

The flocculating process of sewage treatment is a complicated and nonlinear system, and it is very difficult to found the process model to describe it. The radial basis probabilistic neural network (RBPNN) has the ability of strong function approach and fast convergence. In this paper, an intelligent optimized control system based on radial basis probabilistic neural network is presented. We constructed the structure of radial basis probabilistic neural network that used for controlling the flocculation process, and adopt the K-Nearest Neighbor algorithm and least square method to train the network. We given the architecture of control system and analyzed the working process of system. In this system, the parameters of flocculation process were measured using sensors, and then the control system can control the flocculation process real-time. The system was used in the sewage treatment plant. The experimental results prove that this system is feasible.


2021 ◽  
Vol 36 (06) ◽  
Author(s):  
NGUYEN MINH QUANG ◽  
TRAN NGUYEN MINH AN ◽  
NGUYEN HOANG MINH ◽  
TRAN XUAN MAU ◽  
PHAM VAN TAT

In this study, the stability constants of metal-thiosemicarbazone complexes, logb11 were determined by using the quantitative structure property relationship (QSPR) models. The molecular descriptors, physicochemical and quantum descriptors of complexes were generated from molecular geometric structure and semi-empirical quantum calculation PM7 and PM7/sparkle. The QSPR models were built by using the ordinary least square regression (QSPROLS), partial least square regression (QSPRPLS), primary component regression (QSPRPCR) and artificial neural network (QSPRANN). The best linear model QSPROLS (with k of 9) involves descriptors C5, xp9, electric energy, cosmo volume, N4, SsssN, cosmo area, xp10 and core-core repulsion. The QSPRPLS, QSPR PCR and QSPRANN models were developed basing on 9 varibles of the QSPROLS model. The quality of the QSPR models were validated by the statistical values; The QSPROLS: R2train = 0.944, Q2LOO = 0.903 and MSE = 1.035; The QSPRPLS: R2train = 0.929, R2CV = 0.938 and MSE = 1.115; The QSPRPCR: R2train = 0.934, R2CV = 0.9485 and MSE = 1.147. The neural network model QSPRANN with architecture I(9)-HL(12)-O(1) was presented also with the statistical values: R2train = 0.9723, and R2CV = 0.9731. The QSPR models also were evaluated externally and got good performance results with those from the experimental literature.


Sign in / Sign up

Export Citation Format

Share Document