scholarly journals Multi-Blockchain-Based IoT Data Processing Techniques to Ensure the Integrity of IoT Data in AIoT Edge Computing Environments

Sensors ◽  
2021 ◽  
Vol 21 (10) ◽  
pp. 3515
Author(s):  
Sung-Ho Sim ◽  
Yoon-Su Jeong

As the development of IoT technologies has progressed rapidly recently, most IoT data are focused on monitoring and control to process IoT data, but the cost of collecting and linking various IoT data increases, requiring the ability to proactively integrate and analyze collected IoT data so that cloud servers (data centers) can process smartly. In this paper, we propose a blockchain-based IoT big data integrity verification technique to ensure the safety of the Third Party Auditor (TPA), which has a role in auditing the integrity of AIoT data. The proposed technique aims to minimize IoT information loss by multiple blockchain groupings of information and signature keys from IoT devices. The proposed technique allows IoT information to be effectively guaranteed the integrity of AIoT data by linking hash values designated as arbitrary, constant-size blocks with previous blocks in hierarchical chains. The proposed technique performs synchronization using location information between the central server and IoT devices to manage the cost of the integrity of IoT information at low cost. In order to easily control a large number of locations of IoT devices, we perform cross-distributed and blockchain linkage processing under constant rules to improve the load and throughput generated by IoT devices.

Author(s):  
Shuping Dang ◽  
Guoqing Ma ◽  
Basem Shihada ◽  
Mohamed-Slim Alouini

<pre>The smart building (SB), a promising solution to the fast-paced and continuous urbanization around the world, is an integration of a wide range of systems and services and involves a construction of multiple layers. The SB is capable of sensing, acquiring and processing a tremendous amount of data as well as performing proper action and adaptation accordingly. With rapid increases in the number of connected nodes and thereby the data transmission demand in SBs, conventional transmission and processing techniques are insufficient to provide satisfactory services. To enhance the intelligence of SBs and achieve efficient monitoring and control, both indoor visible light communications (VLC) and machine learning (ML) shall be applied jointly to construct a reliable data transmission network with powerful data processing and reasoning abilities. In this regard, we envision an SB framework enabled by indoor VLC and ML in this article.</pre>


2013 ◽  
Vol 33 (1) ◽  
pp. 01-10 ◽  
Author(s):  
Irenilson M. da Silva ◽  
Héliton Pandorfi ◽  
Ângelo J. S. de Vasconcelos ◽  
Renato Laurenti ◽  
Cristiane Guiselini

Due to the importance of the environment on animal production and thus environmental control, the study aims to build a system for monitoring and control the meteorological variables, temperature and relative humidity, low cost, which can be associated with an evaporative cooling system (ECS). The system development included all the stages of assembly, test and laboratory calibration, and later the validation of the equipment carried in the field. The validation step showed results which allowed concluding that the system can be safely used in the monitoring of these variables. The controller was efficient in management of the microclimate in the waiting corral and allowed the maintenance of the air temperature within the comfort range for dairy cattle in pre-milking with averaged 25.09 ºC during the afternoon. The equipment showed the lower cost (R$ 325.76) when compared to other middle market (R$ 450.00).


Author(s):  
Ігор Бережний ◽  
◽  
Адріан Наконечний ◽  

Based on the research and comparative analysis of existing systems, an algorithm for remote monitoring and control of the technological process using IoT technologies is proposed and developed. We consider a system with flexible algorithms, which combines different data protocols using Wi-Fi technology, which allows you to use this type of system in any industry safely with high speed, energy efficiency and without the cost of communication lines.


Sensors ◽  
2019 ◽  
Vol 19 (17) ◽  
pp. 3643 ◽  
Author(s):  
Abba ◽  
Namkusong ◽  
Lee ◽  
Crespo

Irrigation systems are becoming increasingly important, owing to the increase in human population, global warming, and food demand. This study aims to design a low-cost autonomous sensor interface to automate the monitoring and control of irrigation systems in remote locations, and to optimize water use for irrigation farming. An internet of things-based irrigation monitoring and control system, employing sensors and actuators, is designed to facilitate the autonomous supply of adequate water from a reservoir to domestic crops in a smart irrigation systems. System development lifecycle and waterfall model design methodologies have been employed in the development paradigm. The Proteus 8.5 design suite, Arduino integrated design environment, and embedded C programming language are commonly used to develop and implement a real working prototype. A pumping mechanism has been used to supply the water required by the soil. The prototype provides power supply, sensing, monitoring and control, and internet connectivity capabilities. Experimental and simulation results demonstrate the flexibility and practical applicability of the proposed system, and are of paramount importance, not only to farmers, but also for the expansion of economic activity. Furthermore, this system reduces the high level of supervision required to supply irrigation water, enabling remote monitoring and control.


Agronomy ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 936 ◽  
Author(s):  
Radu L. Sumalan ◽  
Nicoleta Stroia ◽  
Daniel Moga ◽  
Vlad Muresan ◽  
Alexandru Lodin ◽  
...  

This paper presents the development of a cost-effective automatic system for greenhouse environment control. The architectural and functional features were analyzed in the context of the realization of a controlled-environment agricultural system through all its stages: installation, deployment of the software, integration, maintenance, crop control strategy setup and daily operation of the grower. The proposed embedded platform provides remote monitoring and control of the greenhouse environment and is implemented as a distributed sensing and control network integrating wired and wireless nodes. All nodes were built with low-cost, low-power microcontrollers. The key issues that were addressed include the energy-efficient control, the robustness of the distributed control network to faults and a low-cost hardware implementation. The translation of the supervisory growth-planning information to the operational (control network) level is achieved through a specific architecture residing on a crop planning module (CPM) and an interfacing block (IB). A suite of software applications with flows and interfaces developed from a grower-centric perspective was designed and implemented on a multi-tier architecture. The operation of the platform was validated through implementation of sensing and control nodes, application of software for configuration and visualization, and deployment in typical greenhouses.


1991 ◽  
Vol 24 (1) ◽  
pp. 89-95 ◽  
Author(s):  
S. M. Rao Bhamidimarri

The concepts of effluent irrigation and aerobic composting of organic solid wastes are not new, but the meat industry in New Zealand has developed these concepts further in recent years for effective treatment and recovery of resource in meat processing wastes. Significant advances have been made in developing design, operation, monitoring and control of these low-cost simple technologies, which are well suited for the treatment and utilization of meat industry wastes in New Zealand. The feasibility of utilizing these high-strength organic wastes for organic farming has been demonstrated.


Author(s):  
Poi Loon Tang ◽  
Clarence W. de Silva ◽  
George Wang

This paper presents a framework for developing a universal network infrastructure that would allow web-based monitoring and control of industrial processes, research facilities, and academic experiments. Internet technology is used here for its versatility, wide availability, and relative low cost. The main element of the infrastructure is a web-server, which connects to multiple control-servers, which in turn are connected to various processing modules within a local industrial facility, Since the web-server is the system centerpiece, which provides smooth information flow, a robust, intelligent, and autonomous scheduling scheme is required. Once such infrastructure is established, remote users in an academic or research environment, or in an industrial environment will be able to carry out a variety of tasks including experiments, monitoring and supervision, process scheduling and reconfiguration, using a web-browser. The flexibility and modularity of the developed networked infrastructure provide the rationale for implementing a multi-level hierarchical monitoring and control structure for a process. The usefulness of such a hierarchical structure is demonstrated through an application example on an industrial fish processing machine, which incorporates intelligent adaptive control.


1995 ◽  
Vol 387 ◽  
Author(s):  
Chi Yung Fu ◽  
Loren Petrich ◽  
Benjamin Law

AbstractThe cost of a fabrication line, such as one in a semiconductor house, has increased dramatically over the years, and it is possibly already past the point that some new start-up company can have sufficient capital to build a new fabrication line. Such capital-intensive manufacturing needs better utilization of resources and management of equipment to maximize its productivity. In order to maximize the return from such a capital-intensive manufacturing line, we need to work on the following: 1) increasing the yield, 2) enhancing the flexibility of the fabrication line, 3) improving quality, and finally 4) minimizing the down time of the processing equipment. Because of the significant advances now made in the fields of artificial neural networks, fuzzy logic, machine learning and genetic algorithms, we advocate the use of these new tools in manufacturing. We term the applications to manufacturing of these and other such tools that mimic human intelligence neural manufacturing. This paper describes the effort at the Lawrence Livermore National Laboratory (LLNL) [1] to use artificial neural networks to address certain semiconductor process modeling, monitoring and control questions.


Author(s):  
Yan Xunshi ◽  
Zhou Yan ◽  
Zhao Jingjing ◽  
Sun Zhe ◽  
Shi Zhengang

In order to cut cost and simplify redevelopment, the paper proposes a new design for monitoring and control system in active magnetic bearing. Data sampling and processing module is separated with data display module. Singlechip processor is used to sample data from the DSP controller, and processes the data into the needed form. A touch-screen only for display takes on the processed data to customers. The design makes the systems easy to develop and shrink the cost to one tenth of previous design.


1987 ◽  
Vol 20 (1) ◽  
pp. 7-17 ◽  
Author(s):  
R A Furness

Pipelines are an integral part of the world's economy and literally billions of pounds worth of fluids are moved each year in pipelines of varying lengths and diameters. As the cost of some of these fluids and the price of moving them has increased, so the need to measure the flows more accurately and control and operate the line more effectively has arisen. Instrumentation and control equipment has developed steadily in the past decade but not as fast as the computers and microprocessors that are now a part of most large scale pipeline systems. It is the interfacing of the new generation of digital and sometimes ‘intelligent’ instrumentation with smaller and more powerful computers that has led to a quiet but rapid revolution in pipeline monitoring and control. This paper looks at the more significant developments from the many that have appeared in the past few years and attempts to project future trends in the industry for the next decade.


Sign in / Sign up

Export Citation Format

Share Document