scholarly journals DB-YOLO: A Duplicate Bilateral YOLO Network for Multi-Scale Ship Detection in SAR Images

Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 8146
Author(s):  
Haozhen Zhu ◽  
Yao Xie ◽  
Huihui Huang ◽  
Chen Jing ◽  
Yingjiao Rong ◽  
...  

With the wide application of convolutional neural networks (CNNs), a variety of ship detection methods based on CNNs in synthetic aperture radar (SAR) images were proposed, but there are still two main challenges: (1) Ship detection requires high real-time performance, and a certain detection speed should be ensured while improving accuracy; (2) The diversity of ships in SAR images requires more powerful multi-scale detectors. To address these issues, a SAR ship detector called Duplicate Bilateral YOLO (DB-YOLO) is proposed in this paper, which is composed of a Feature Extraction Network (FEN), Duplicate Bilateral Feature Pyramid Network (DB-FPN) and Detection Network (DN). Firstly, a single-stage network is used to meet the need of real-time detection, and the cross stage partial (CSP) block is used to reduce the redundant parameters. Secondly, DB-FPN is designed to enhance the fusion of semantic and spatial information. In view of the ships in SAR image are mainly distributed with small-scale targets, the distribution of parameters and computation values between FEN and DB-FPN in different feature layers is redistributed to solve the multi-scale detection. Finally, the bounding boxes and confidence scores are given through the detection head of YOLO. In order to evaluate the effectiveness and robustness of DB-YOLO, comparative experiments with the other six state-of-the-art methods (Faster R-CNN, Cascade R-CNN, Libra R-CNN, FCOS, CenterNet and YOLOv5s) on two SAR ship datasets, i.e., SSDD and HRSID, are performed. The experimental results show that the AP50 of DB-YOLO reaches 97.8% on SSDD and 94.4% on HRSID, respectively. DB-YOLO meets the requirement of real-time detection (48.1 FPS) and is superior to other methods in the experiments.

Author(s):  
Haomiao Liu ◽  
Haizhou Xu ◽  
Lei Zhang ◽  
Weigang Lu ◽  
Fei Yang ◽  
...  

Maritime ship monitoring plays an important role in maritime transportation. Fast and accurate detection of maritime ship is the key to maritime ship monitoring. The main sources of marine ship images are optical images and synthetic aperture radar (SAR) images. Different from natural images, SAR images are independent to daylight and weather conditions. Traditional ship detection methods of SAR images mainly depend on the statistical distribution of sea clutter, which leads to poor robustness. As a deep learning detector, RetinaNet can break this obstacle, and the problem of imbalance on feature level and objective level can be further solved by combining with Libra R-CNN algorithm. In this paper, we modify the feature fusion part of Libra RetinaNet by adding a bottom-up path augmentation structure to better preserve the low-level feature information, and we expand the dataset through style transfer. We evaluate our method on the publicly available SAR dataset of ship detection with complex backgrounds. The experimental results show that the improved Libra RetinaNet can effectively detect multi-scale ships through expansion of the dataset, with an average accuracy of 97.38%.


2019 ◽  
Vol 11 (5) ◽  
pp. 526 ◽  
Author(s):  
Nengyuan Liu ◽  
Zongjie Cao ◽  
Zongyong Cui ◽  
Yiming Pi ◽  
Sihang Dang

The classic ship detection methods in synthetic aperture radar (SAR) images suffer from an extreme variance of ship scale. Generating a set of ship proposals before detection operation can effectively alleviate the multi-scale problem. In order to construct a scale-independent proposal generator for SAR images, we suggest four characteristics of ships in SAR images and the corresponding four procedures in this paper. Based on these characteristics and procedures, we put forward a framework to explore multi-scale ship proposals. The designed framework mainly contains two stages: hierarchical grouping and proposal scoring. Firstly, we extract edges, superpixels and strong scattering components from SAR images. The ship proposals are obtained at hierarchical grouping stage by combining the strong scattering components with superpixel grouping. Considering the difference of edge density and the completeness and tightness of contour, we obtain the scores to measure the confidence that a proposal contains a ship. Finally, the ranking proposals are obtained. Extensive experiments demonstrate the effectiveness of the four procedures. Our method achieves 0.70 the average best overlap (ABO) score, 0.59 the area under the curve (AUC) score and 0.85 best recall on a challenging dataset. In addition, the recall of our method on three scale subsets are all above 0.80. Experimental results demonstrate that our algorithm outperforms the approaches previously used for SAR images.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Jiuwu Sun ◽  
Zhijing Xu ◽  
Shanshan Liang

With the rapid development of the marine industry, intelligent ship detection plays a very important role in the marine traffic safety and the port management. Current detection methods mainly focus on synthetic aperture radar (SAR) images, which is of great significance to the field of ship detection. However, these methods sometimes cannot meet the real-time requirement. To solve the problems, a novel ship detection network based on SSD (Single Shot Detector), named NSD-SSD, is proposed in this paper. Nowadays, the surveillance system is widely used in the indoor and outdoor environment, and its combination with deep learning greatly promotes the development of intelligent object detection and recognition. The NSD-SSD uses visual images captured by surveillance cameras to achieve real-time detection and further improves detection performance. First, dilated convolution and multiscale feature fusion are combined to improve the small objects’ performance and detection accuracy. Second, an improved prediction module is introduced to enhance deeper feature extraction ability of the model, and the mean Average Precision (mAP) and recall are significant improved. Finally, the prior boxes are reconstructed by using the K-means clustering algorithm, the Intersection-over-Union (IoU) is higher, and the visual effect is better. The experimental results based on ship images show that the mAP and recall can reach 89.3% and 93.6%, respectively, which outperforms the representative model (Faster R-CNN, SSD, and YOLOv3). Moreover, our model’s FPS is 45, which can meet real-time detection acquirement well. Hence, the proposed method has the better overall performance and achieves higher detection efficiency and better robustness.


2021 ◽  
Author(s):  
Marie Ballere ◽  
Stephane Mermoz ◽  
Alexandre Bouvet ◽  
Thierry Koleck ◽  
Thuy Le Toan

<p>Tropical forests account more than 50% of recorded terrestrial biodiversity and play an important role in carbon storage and the water cycle. The degradation of tropical forests presents an immediate danger for the global environment and biodiversity. Monitoring of deforestation and understanding its drivers are challenging tasks that are essential to measures of reduction of deforestation.</p><p>Many researches have been carried out on the detection of deforestation using remote sensing data, and there are several operational systems that work. Those systems are mostly based on optical data, but they show big delays in detections due to the persistent cloud cover in the tropics. Since 2014, Sentinel-1 provides SAR images every 6 to 12 days, insensitive to cloud cover. Deforestation detection methods based on SAR images have increased and start to be operational (Bouvet et al. 2018, Reiche et al. 2021). They allow for faster and more accurate mapping. For example, Ballere et al. 2021 shows that 80% of gold-mining-related deforestation in French Guiana is first detected by a SAR-based method, before the optical method, most often offset by several months.</p><p>However, the detection of disturbances in itself is not sufficient for measures to halt deforestation. Finer et al. 2017 defined a 5 steps protocol in order to help the near-real-time monitoring to be effective, the first step being the detection. Then comes the prioritization of data: this can be done by integrating spatial data such as protected areas or specific areas of interest. The third step is the identification of the drivers. This usually involves human-work.</p><p>We present here an automatic method for the identification of the drivers of deforestation in French Guiana (gold mining, urbanization, small-scale agriculture and forest exploitation), and show its results. It is based on geographical and morphological indicators, and makes it possible not to wait for another image after the detection step. The method has the potential to be integrated into an operational system for French Guiana.</p>


2021 ◽  
Vol 14 (1) ◽  
pp. 31
Author(s):  
Jimin Yu ◽  
Guangyu Zhou ◽  
Shangbo Zhou ◽  
Maowei Qin

It is very difficult to detect multi-scale synthetic aperture radar (SAR) ships, especially under complex backgrounds. Traditional constant false alarm rate methods are cumbersome in manual design and weak in migration capabilities. Based on deep learning, researchers have introduced methods that have shown good performance in order to get better detection results. However, the majority of these methods have a huge network structure and many parameters which greatly restrict the application and promotion. In this paper, a fast and lightweight detection network, namely FASC-Net, is proposed for multi-scale SAR ship detection under complex backgrounds. The proposed FASC-Net is mainly composed of ASIR-Block, Focus-Block, SPP-Block, and CAPE-Block. Specifically, without losing information, Focus-Block is placed at the forefront of FASC-Net for the first down-sampling of input SAR images at first. Then, ASIR-Block continues to down-sample the feature maps and use a small number of parameters for feature extraction. After that, the receptive field of the feature maps is increased by SPP-Block, and then CAPE-Block is used to perform feature fusion and predict targets of different scales on different feature maps. Based on this, a novel loss function is designed in the present paper in order to train the FASC-Net. The detection performance and generalization ability of FASC-Net have been demonstrated by a series of comparative experiments on the SSDD dataset, SAR-Ship-Dataset, and HRSID dataset, from which it is obvious that FASC-Net has outstanding detection performance on the three datasets and is superior to the existing excellent ship detection methods.


2021 ◽  
Vol 13 (13) ◽  
pp. 2558
Author(s):  
Lei Yu ◽  
Haoyu Wu ◽  
Zhi Zhong ◽  
Liying Zheng ◽  
Qiuyue Deng ◽  
...  

Synthetic aperture radar (SAR) is an active earth observation system with a certain surface penetration capability and can be employed to observations all-day and all-weather. Ship detection using SAR is of great significance to maritime safety and port management. With the wide application of in-depth learning in ordinary images and good results, an increasing number of detection algorithms began entering the field of remote sensing images. SAR image has the characteristics of small targets, high noise, and sparse targets. Two-stage detection methods, such as faster regions with convolution neural network (Faster RCNN), have good results when applied to ship target detection based on the SAR graph, but their efficiency is low and their structure requires many computing resources, so they are not suitable for real-time detection. One-stage target detection methods, such as single shot multibox detector (SSD), make up for the shortage of the two-stage algorithm in speed but lack effective use of information from different layers, so it is not as good as the two-stage algorithm in small target detection. We propose the two-way convolution network (TWC-Net) based on a two-way convolution structure and use multiscale feature mapping to process SAR images. The two-way convolution module can effectively extract the feature from SAR images, and the multiscale mapping module can effectively process shallow and deep feature information. TWC-Net can avoid the loss of small target information during the feature extraction, while guaranteeing good perception of a large target by the deep feature map. We tested the performance of our proposed method using a common SAR ship dataset SSDD. The experimental results show that our proposed method has a higher recall rate and precision, and the F-Measure is 93.32%. It has smaller parameters and memory consumption than other methods and is superior to other methods.


2019 ◽  
Vol 11 (2) ◽  
pp. 142 ◽  
Author(s):  
Wenping Ma ◽  
Hui Yang ◽  
Yue Wu ◽  
Yunta Xiong ◽  
Tao Hu ◽  
...  

In this paper, a novel change detection approach based on multi-grained cascade forest(gcForest) and multi-scale fusion for synthetic aperture radar (SAR) images is proposed. It detectsthe changed and unchanged areas of the images by using the well-trained gcForest. Most existingchange detection methods need to select the appropriate size of the image block. However, thesingle size image block only provides a part of the local information, and gcForest cannot achieve agood effect on the image representation learning ability. Therefore, the proposed approach choosesdifferent sizes of image blocks as the input of gcForest, which can learn more image characteristicsand reduce the influence of the local information of the image on the classification result as well.In addition, in order to improve the detection accuracy of those pixels whose gray value changesabruptly, the proposed approach combines gradient information of the difference image with theprobability map obtained from the well-trained gcForest. Therefore, the image edge information canbe enhanced and the accuracy of edge detection can be improved by extracting the image gradientinformation. Experiments on four data sets indicate that the proposed approach outperforms otherstate-of-the-art algorithms.


Sign in / Sign up

Export Citation Format

Share Document