scholarly journals Sensor Data Fusion for a Mobile Robot Using Neural Networks

Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 305
Author(s):  
Andres J. Barreto-Cubero ◽  
Alfonso Gómez-Espinosa ◽  
Jesús Arturo Escobedo Cabello ◽  
Enrique Cuan-Urquizo ◽  
Sergio R. Cruz-Ramírez

Mobile robots must be capable to obtain an accurate map of their surroundings to move within it. To detect different materials that might be undetectable to one sensor but not others it is necessary to construct at least a two-sensor fusion scheme. With this, it is possible to generate a 2D occupancy map in which glass obstacles are identified. An artificial neural network is used to fuse data from a tri-sensor (RealSense Stereo camera, 2D 360° LiDAR, and Ultrasonic Sensors) setup capable of detecting glass and other materials typically found in indoor environments that may or may not be visible to traditional 2D LiDAR sensors, hence the expression improved LiDAR. A preprocessing scheme is implemented to filter all the outliers, project a 3D pointcloud to a 2D plane and adjust distance data. With a Neural Network as a data fusion algorithm, we integrate all the information into a single, more accurate distance-to-obstacle reading to finally generate a 2D Occupancy Grid Map (OGM) that considers all sensors information. The Robotis Turtlebot3 Waffle Pi robot is used as the experimental platform to conduct experiments given the different fusion strategies. Test results show that with such a fusion algorithm, it is possible to detect glass and other obstacles with an estimated root-mean-square error (RMSE) of 3 cm with multiple fusion strategies.

Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2480
Author(s):  
Isidoro Ruiz-García ◽  
Ismael Navarro-Marchal ◽  
Javier Ocaña-Wilhelmi ◽  
Alberto J. Palma ◽  
Pablo J. Gómez-López ◽  
...  

In skiing it is important to know how the skier accelerates and inclines the skis during the turn to avoid injuries and improve technique. The purpose of this pilot study with three participants was to develop and evaluate a compact, wireless, and low-cost system for detecting the inclination and acceleration of skis in the field based on inertial measurement units (IMU). To that end, a commercial IMU board was placed on each ski behind the skier boot. With the use of an attitude and heading reference system algorithm included in the sensor board, the orientation and attitude data of the skis were obtained (roll, pitch, and yaw) by IMU sensor data fusion. Results demonstrate that the proposed IMU-based system can provide reliable low-drifted data up to 11 min of continuous usage in the worst case. Inertial angle data from the IMU-based system were compared with the data collected by a video-based 3D-kinematic reference system to evaluate its operation in terms of data correlation and system performance. Correlation coefficients between 0.889 (roll) and 0.991 (yaw) were obtained. Mean biases from −1.13° (roll) to 0.44° (yaw) and 95% limits of agreements from 2.87° (yaw) to 6.27° (roll) were calculated for the 1-min trials. Although low mean biases were achieved, some limitations arose in the system precision for pitch and roll estimations that could be due to the low sampling rate allowed by the sensor data fusion algorithm and the initial zeroing of the gyroscope.


2018 ◽  
Vol 45 (11) ◽  
pp. 958-972 ◽  
Author(s):  
Ashraf Salem ◽  
Osama Moselhi

Continuous monitoring of productivity and assessment of its variations are crucial processes that significantly contribute to success of earthmoving projects. Numerous factors may lead to productivity variations. However, these factors are subjectively identified using manual knowledge-based expert judgment. Such manual recognition process is not only subject to errors but also time-consuming. There is a lack of research work that focuses on near real-time assessment of productivity variation and its effect on cost, schedule and effective utilization of resources in earthmoving projects. This paper presents a customized multi-source automated data acquisition model that acquires data from a variety of wireless sensing technologies. The acquired multi-sensor data are transmitted to a central MySQL database. Then a newly developed data fusion algorithm is applied for truck state recognition, and hence the duration of each earthmoving state. Multi-sensor data fusion facilitates measurement of actual productivity, and consequently the assessment of productivity ratios that support continuous monitoring of productivity variation in earthmoving operations. The developed tracking and monitoring model generates an early warning that supports proactive decisions to avoid schedule delays, cost overruns, and inefficient depletion of resources. A case study is used to reveal the applicability of the proposed model in monitoring and assessing actual productivity and its deviations from planned productivity. Finally, results are discussed and conclusions are drawn highlighting the features of the proposed model.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Guangbing Zhou ◽  
Jing Luo ◽  
Shugong Xu ◽  
Shunqing Zhang ◽  
Shige Meng ◽  
...  

Purpose Indoor localization is a key tool for robot navigation in indoor environments. Traditionally, robot navigation depends on one sensor to perform autonomous localization. This paper aims to enhance the navigation performance of mobile robots, a multiple data fusion (MDF) method is proposed for indoor environments. Design/methodology/approach Here, multiple sensor data i.e. collected information of inertial measurement unit, odometer and laser radar, are used. Then, an extended Kalman filter (EKF) is used to incorporate these multiple data and the mobile robot can perform autonomous localization according to the proposed EKF-based MDF method in complex indoor environments. Findings The proposed method has experimentally been verified in the different indoor environments, i.e. office, passageway and exhibition hall. Experimental results show that the EKF-based MDF method can achieve the best localization performance and robustness in the process of navigation. Originality/value Indoor localization precision is mostly related to the collected data from multiple sensors. The proposed method can incorporate these collected data reasonably and can guide the mobile robot to perform autonomous navigation (AN) in indoor environments. Therefore, the output of this paper would be used for AN in complex and unknown indoor environments.


2021 ◽  
pp. 315-323
Author(s):  
Thi-Kien Dao ◽  
Trong-The Nguyen ◽  
Van-Dinh Vu ◽  
Truong-Giang Ngo

Sensors ◽  
2019 ◽  
Vol 19 (8) ◽  
pp. 1778 ◽  
Author(s):  
Juan Wu ◽  
Simon X. Yang

The bulk tobacco flue-curing process is followed by a bulk tobacco curing schedule, which is typically pre-set at the beginning and might be adjusted by the curer to accommodate the need for tobacco leaves during curing. In this study, the controlled parameters of a bulk tobacco curing schedule were presented, which is significant for the systematic modelling of an intelligent tobacco flue-curing process. To fully imitate the curer’s control of the bulk tobacco curing schedule, three types of sensors were applied, namely, a gas sensor, image sensor, and moisture sensor. Feature extraction methods were given forward to extract the odor, image, and moisture features of the tobacco leaves individually. Three multi-sensor data fusion schemes were applied, where a least squares support vector machines (LS-SVM) regression model and adaptive neuro-fuzzy inference system (ANFIS) decision model were used. Four experiments were conducted from July to September 2014, with a total of 603 measurement points, ensuring the results’ robustness and validness. The results demonstrate that a hybrid fusion scheme achieves a superior prediction performance with the coefficients of determination of the controlled parameters, reaching 0.9991, 0.9589, and 0.9479, respectively. The high prediction accuracy made the proposed hybrid fusion scheme a feasible, reliable, and effective method to intelligently control over the tobacco curing schedule.


Sign in / Sign up

Export Citation Format

Share Document