Optimizing Strategies for the Urban Work Zone with Time Window Constraints
Work zones that move with road maintenance tasks are enclosing and have caused severe traffic jams and the significant decline of road capacity. This paper proposes an intelligent-based multi-objects road maintenance optimization strategy based on a practical origin–destination (OD) matrix and complicated work schedules over a real urban road network. It focuses on the optimization of multi short-term maintenance tasks and the minimization of average travel delay for vehicles passing through. By taking the driving characteristic into account, static and dynamic variable speed limit strategies provide access to ensure safety on the working road network. Through this view, the problem was formulated as a mixed multi-object nonlinear program (MNLP) model with respect to the time window of the related sub-maintenance task. By using actual OD distribution matrix data, a series of microscopic simulated cases were conducted to test the model’s validity. Moreover, sensitive analyses of types of parameters (e.g., traffic safety threshold, traffic flow and working efficiency) with an optimal solution were discussed considering five different scenarios.