Comparative Assessment to Predict and Forecast Water-Cooled Chiller Power Consumption Using Machine Learning and Deep Learning Algorithms
Over the last few decades, total energy consumption has increased while energy resources remain limited. Energy demand management is crucial for this reason. To solve this problem, predicting and forecasting water-cooled chiller power consumption using machine learning and deep learning are presented. The prediction models adopted are thermodynamic model and multi-layer perceptron (MLP), while the time-series forecasting models adopted are MLP, one-dimensional convolutional neural network (1D-CNN), and long short-term memory (LSTM). Each group of models is compared. The best model in each group is then selected for implementation. The data were collected every minute from an academic building at one of the universities in Taiwan. The experimental result demonstrates that the best prediction model is the MLP with 0.971 of determination (R2), 0.743 kW of mean absolute error (MAE), and 1.157 kW of root mean square error (RMSE). The time-series forecasting model trained every day for three consecutive days using new data to forecast the next minute of power consumption. The best time-series forecasting model is LSTM with 0.994 of R2, 0.233 kW of MAE, and 1.415 kW of RMSE. The models selected for both MLP and LSTM indicated very close predictive and forecasting values to the actual value.