scholarly journals Prediction of Potential Geographical Distribution Patterns of Actinidia arguta under Different Climate Scenarios

2021 ◽  
Vol 13 (6) ◽  
pp. 3526
Author(s):  
Yining Ma ◽  
Xiaoling Lu ◽  
Kaiwei Li ◽  
Chunyi Wang ◽  
Ari Guna ◽  
...  

Actinidia arguta (Siebold and Zucc.) Planch.ex Miq, called “hardy kiwifruit”, “baby kiwi” or “kiwi berry”, has a unique taste, is rich in nutrients and has high economic value and broad market prospects. Active research on the potential geographic distribution of A. arguta in China aims to provide a reference basis for its resource investigation, conservation, development and utilization and introduction of cultivation. In this study, the Maxent model was used to combine climatic factors, soil factors and geographical factors (elevation, slope and aspect) to predict the current and future (2041–2060 and 2081–2100) potential distribution of A. arguta and to analyze the impact of climate change on it. The results showed that the suitable distribution range of A. arguta in China was 23–43 N and 100–125 E, with a total area of about 3.4451 × 106 km2. The highly suitable area of A. arguta was mainly concentrated in the middle and low mountain areas of the south of Shaanxi, the east of Sichuan, the middle and west of Guizhou and the west of Yunnan, presenting a circular distribution. The Jackknife test was used to calculate the main environmental factors affecting the distribution of A. arguta. The first four main factors were annual mean temperature (bio_1), precipitation of the warmest quarter (bio_18), elevation (ELE) and mean temperature of the warmest quarter (bio_10), which provided a contribution up to 81.7%. Under the scenarios of three representative concentrations (SSP1_2.6, SSP2_4.5 and SSP5_8.5) in the future, the area of low and moderate suitable habitat decreased, while the area of highly suitable habitat increased. The migration direction of the centroid in the highly suitable habitat moved to the southwest in the future scenario period.

Plants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 84
Author(s):  
Huanchu Liu ◽  
Hans Jacquemyn ◽  
Xingyuan He ◽  
Wei Chen ◽  
Yanqing Huang ◽  
...  

Human pressure on the environment and climate change are two important factors contributing to species decline and overall loss of biodiversity. Orchids may be particularly vulnerable to human-induced losses of habitat and the pervasive impact of global climate change. In this study, we simulated the extent of the suitable habitat of three species of the terrestrial orchid genus Cypripedium in northeast China and assessed the impact of human pressure and climate change on the future distribution of these species. Cypripedium represents a genus of long-lived terrestrial orchids that contains several species with great ornamental value. Severe habitat destruction and overcollection have led to major population declines in recent decades. Our results showed that at present the most suitable habitats of the three species can be found in Da Xing’an Ling, Xiao Xing’an Ling and in the Changbai Mountains. Human activity was predicted to have the largest impact on species distributions in the Changbai Mountains. In addition, climate change was predicted to lead to a shift in distribution towards higher elevations and to an increased fragmentation of suitable habitats of the three investigated Cypripedium species in the study area. These results will be valuable for decision makers to identify areas that are likely to maintain viable Cypripedium populations in the future and to develop conservation strategies to protect the remaining populations of these enigmatic orchid species.


Author(s):  
Zhang ◽  
Jing ◽  
Li ◽  
Liu ◽  
Fang

Rapid changes in global climate exert tremendous pressure on forest ecosystems. Cinnamomum camphora (L.) Presl is a multi-functional tree species, and its distribution and growth are also affected by climate warming. In order to realize its economic value and ecological function, it is necessary to explore the impact of climate change on its suitable habitats under different scenarios. In this experiment, 181 geographical distribution data were collected, and the MaxEnt algorithm was used to predict the distribution of suitable habitats. To complete the simulation, we selected two greenhouse gas release scenarios, RCP4.5 and RCP8.5, and also three future time periods, 2025s, 2055s, and 2085s. The importance of environmental variables for modeling was evaluated by jackknife test. Our study found that accumulated temperature played a key role in the distribution of camphor trees. With the change of climate, the area of suitable range will increase and continue to move to the northwest of China. These findings could provide guidance for the plantation establishment and resource protection of camphor in China.


2020 ◽  
Author(s):  
Monsimet Jérémy ◽  
Devineau Olivier ◽  
Pétillon Julien ◽  
Lafage Denis

ABSTRACTFishing spiders (Dolomedes spp.) make an interesting model to predict the impact of global changes because they are generalist, opportunistic predators, whose distribution is driven mostly by abiotic factors. Yet, the two European species are expected to react differently to forthcoming environmental changes, because of habitat specialization and initial range. We used an original combination of habitat and dispersal data to revisit these predictions under various climatic scenarios. We used the future range of suitable habitat, predicted with habitat variables only, as a base layer to further predict the range or reachable habitat by accounting for both dispersal ability and landscape connectivity. Our results confirm the northward shift in range and indicate that the area of co-occurrences should also increase. However, reachable habitat should expand less than suitable habitat, especially when accounting for landscape connectivity. In addition, the potential range expansion was further limited for the red-listed D. plantarius, which is more habitat-specialist and has a lower ability to disperse. This study highlights the importance of looking beyond habitat variables to produce more accurate predictions for the future of arthropods populations.


2016 ◽  
Vol 4 (2) ◽  
pp. 123
Author(s):  
Adam Maulana

<p class="Abstract"><em>The protected forest area has various functions for human living. The protected forest area is a strategic area which has a function to protect the biodiversity and macro climate, as well as water use balancer. The Act No. 12 of 2012 be the basic for Balikpapan City detailing the spatial planning (RTRW) to the detail spatial planning (RDTR) as the strategic areas of socio-cultural and the environment. The region includes three strategic areas, i.e. protected areas, education, and housing on the water. The concept of sustainable development that focuses on balancing environmental, social and economic become a macro approach to the preparation of a detailed plan for the third strategic area.Currently, the protected forest areas of Wain River and Manggar River currently indicate endangered in the future due to the growing activity over the land, as well as coal mining industry around protected areas. The article aims to determine the direction of development planned in the structuring of protected forest areas that could potentially reduce the impact of threats in the future. The results showed that the management of protected forest areas conducted through the concept of "developmental conservation". This concept was conducted through the collaboration role between the government as the regulator to the development of the natural attractions activity and the local communities as the main stakeholder of tourism development. This concept provides the protection conservation of protected forests at the same time generating economic value for local communities and government.</em><strong><em></em></strong></p>


2018 ◽  
Vol 1 ◽  
pp. 26
Author(s):  
Berchie Asiedu ◽  
Dickson Malcolm ◽  
Seidu Iddrisu

Background: Aquaculture in Ghana is very profitable, but faces sustainability challenges. This paper assessed the impact pathways by which climate change affects the production and profitability of small-scale aquaculture in Ghana. The study analyzed and compared the economic value of smallholder fish farms with and without the incidence of climatic parameters. Methods: Simple random sampling and purposive sampling techniques were used to select the study area and farms. A total of 30 farmers were interviewed using a questionnaire-based interview. Additionally, using document analysis, observation, and data on farms’ production input and output values, the economic impact of climate change on fish farms was assessed. Results: Extreme temperatures, erratic rainfall, floods, drought, storm and erosion are prevalent in fish farms. Available data shows a decrease of 53.4% of small-scale revenue, a 6.9% reduction in small-scale aquaculture value from GH¢ 1,200,000 to GH¢ 83,000, reducing fish supply by 25%. The findings indicate that the profitability, economic value, and livelihoods of the small-scale aquaculture industry is greatly affected by changes in climate. The incidence of floods, drought, erratic rainfall, erosion, and extreme temperature synergistically induce poverty. The implication on the livelihoods of fish farming households is very alarming and poses a serious threat to food security in the country. Conclusion: Based on the findings, this study concludes that; floods, rainfall temperature, and drought are the major climatic factors affecting the profitability and sustainability of the pond aquaculture industry. The preliminary recommendation is that there is an urgent need to map out flood-free zones close to perennial water bodies to overcome floods and droughts. Planting trees around ponds to create a micro-ecologies ideal for fish culture and also the construction of water storage facilities and proper dyke design would overcome drought and erosion issues. The adaptive capacity of fish-farmers must be built.


2019 ◽  
Vol 1 ◽  
pp. 26 ◽  
Author(s):  
Berchie Asiedu ◽  
Dickson Malcolm ◽  
Seidu Iddrisu

Background: Aquaculture in Ghana is very profitable, but faces sustainability challenges. This paper assessed the impact pathways by which climate change affects the production and profitability of small-scale aquaculture in Ghana. The study analyzed and compared the economic value of smallholder fish farms with and without the incidence of climatic parameters. Methods: Simple random sampling and purposive sampling techniques were used to select the study area and farms. A total of 30 farmers were interviewed using a questionnaire-based interview. Additionally, using document analysis, observation, and data on farms’ production input and output values, the economic impact of climate change on fish farms was assessed. Results: Extreme temperatures, erratic rainfall, floods, drought, storm and erosion are prevalent in fish farms. Available data shows a decrease of 53.4% of small-scale revenue, a 6.9% reduction in small-scale aquaculture value from GH¢ 83,000 to GH¢ 120,000 reducing fish supply by 25%. The findings indicate that the profitability, economic value, and livelihoods of the small-scale aquaculture industry is greatly affected by changes in climate. The incidence of floods, drought, erratic rainfall, erosion, and extreme temperature synergistically induce poverty. The implication on the livelihoods of fish farming households is very alarming and poses a serious threat to food security in the country. Conclusion: Based on the findings, this study concludes that; floods, rainfall temperature, and drought are the major climatic factors affecting the profitability and sustainability of the pond aquaculture industry. The preliminary recommendation is that there is an urgent need to map out flood-free zones close to perennial water bodies to overcome floods and droughts. Planting trees around ponds to create a micro-ecologies ideal for fish culture and also the construction of water storage facilities and proper dyke design would overcome drought and erosion issues. The adaptive capacity of fish-farmers must be built.


Oryx ◽  
1991 ◽  
Vol 25 (1) ◽  
pp. 27-32 ◽  
Author(s):  
Mark Simmonds

The European seal epidemic killed approximately 60 per cent of harbour or common seals Phoca vitulina in the colonies of the Wadden Sea, Kattegat–Skagerrak and the Norfolk Wash. High mortality was also observed elsewhere. The die-off peaked in 1988 and few affected seals have been reported subsequently. But what of the future? Is the marine environment still able to support healthy seal populations; is there enough suitable habitat for them; is there enough food; what is the impact of pollution on them; and why has no new legislation been implemented to protect them?


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Jérémy Monsimet ◽  
Olivier Devineau ◽  
Julien Pétillon ◽  
Denis Lafage

Abstract Fishing spiders (Dolomedes spp.) make an interesting model to predict the impact of global changes because they are generalist, opportunistic predators, whose distribution is driven mostly by abiotic factors. Yet, the two European species are expected to react differently to forthcoming environmental changes, because of habitat specialization and initial range. We used an original combination of habitat and dispersal data to revisit these predictions under various climatic scenarios. We used the future range of suitable habitat, predicted with habitat variables only, as a base layer to further predict the range or reachable habitat by accounting for both dispersal ability and landscape connectivity. Our results confirm the northward shift in range and indicate that the area of co-occurrences should also increase. However, reachable habitat should expand less than suitable habitat, especially when accounting for landscape connectivity. In addition, the potential range expansion was further limited for the red-listed D. plantarius, which is more of a habitat specialist and has a lower ability to disperse. This study highlights the importance of looking beyond habitat variables to produce more accurate predictions for the future of arthropods populations.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jahanbakhsh Balist ◽  
Bahram Malekmohammadi ◽  
Hamid Reza Jafari ◽  
Ahmad Nohegar ◽  
Davide Geneletti

AbstractThis study investigates how land use and climate changes affect water yield ecosystem service (ES) in the Sirvan River basin, located in Iran’s Kurdistan and Kermanshah provinces. By detecting land-use and climatic parameter changes in the past, their future evolution were modeled by scenario making. For this purpose, we developed two land-use scenarios (low and high urbanization) and two climatic scenarios (Representative Concentration Pathway 2.6 and RCP 8.5). The implemented scenarios showed how the amount of water yield in the basin and sub-basins changes in the future based on climate and land-use changes. The results showed that, concerning land use, the forest has decreased from 2013 to 2019, and built-up areas have increased. Also, the results showed that precipitation has been declining in the long term, and the temperature has been rising. Finally, the Water yield in 2019 was higher than in 2013 and lower in the future based on forecast scenarios. This trend will continue until 2040. In addition, it was found that the t effects of these factors on water yield ES are a complex process, and based on the results, the impact of climatic factors is more significant than the one of land-use change. We could conclude that this region will face more environmental problems in the future.


F1000Research ◽  
2019 ◽  
Vol 8 ◽  
pp. 978
Author(s):  
Taoufik Saleh Ksiksi ◽  
Remya K. ◽  
Mohamed T. Mousa ◽  
Shima K. Al-Badi ◽  
Salama K. Al Kaabi ◽  
...  

Background: The impact of climate change on selected plant species from the hyper-arid landscape of United Arab Emirates (UAE) was assessed through modeling of their habitat suitability and distribution. Calotropis procera, Prosopis cineraria and Ziziphus spina-christi were used for this study. The specific objectives of this study were to identify the current and future (for 2050s and 2070s) suitable habitats distribution using MaxEnt, an Ecological Envelope Model. Methods: The adopted method consists of extraction of current and future bioclimatic variables together with their land use cover and elevation for the study area. MaxEnt species distribution model was then used to simulate the distribution of the selected species. The projections are simulated for the current date, the 2050s and 2070s using Community Climate System Model version 4 with representative concentration pathway RCP4.5. Results: The current distribution model of all three species evolved with a high suitable habitat towards the north eastern part of the country. For C. procera, an area of 1775 km2 is modeled under highly suitable habitat for the current year, while it is expected to increase for both 2050s and 2070s. The current high suitability of P. cinararia was around an area of 1335 km2 and the future projection revealed an increase of high suitability habitats. Z. spina-christi showed a potential area of 5083 km2 under high suitability and it might increase in the future. Conclusions: Precipitation of coldest quarter (BIO19) had the maximum contribution for all the three species under investigation.


Sign in / Sign up

Export Citation Format

Share Document