scholarly journals Bootstrapped Newtonian Cosmology and the Cosmological Constant Problem

Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 358
Author(s):  
Roberto Casadio ◽  
Andrea Giusti

Bootstrapped Newtonian gravity was developed with the purpose of estimating the impact of quantum physics in the nonlinear regime of the gravitational interaction, akin to corpuscular models of black holes and inflation. In this work, we set the ground for extending the bootstrapped Newtonian picture to cosmological spaces. We further discuss how such models of quantum cosmology can lead to a natural solution to the cosmological constant problem.

Author(s):  
Engel Roza

By solving the weak field limit of Einstein’s Field Equation including the Cosmological Constant, under the constraint of spherical isotropy, it is shown that, at large cosmological distance, the gravitational force exceeds the one that is predicted by Newton’s gravity law, such that it corresponds with Milgrom’s MOND hypothesis. However, the resulting prediction that, at extremely large distances, gravity with some spatial periodicity turns on-and-off into antigravity marks a decisive difference.


Universe ◽  
2020 ◽  
Vol 6 (8) ◽  
pp. 108
Author(s):  
Vesselin Gueorguiev ◽  
Andre Maeder

A new perspective on the Cosmological Constant Problem (CCP) is proposed and discussed within the multiverse approach of Quantum Cosmology. It is assumed that each member of the ensemble of universes has a characteristic scale a that can be used as integration variable in the partition function. An averaged characteristic scale of the ensemble is estimated by using only members that satisfy the Einstein field equations. The averaged characteristic scale is compatible with the Planck length when considering an ensemble of solutions to the Einstein field equations with an effective cosmological constant. The multiverse ensemble is split in Planck-seed universes with vacuum energy density of order one; thus, Λ˜≈8π in Planck units and a-derivable universes. For a-derivable universe with a characteristic scale of the order of the observed Universe a≈8×1060, the cosmological constant Λ=Λ˜/a2 is in the range 10−121–10−122, which is close in magnitude to the observed value 10−123. We point out that the smallness of Λ can be viewed to be natural if its value is associated with the entropy of the Universe. This approach to the CCP reconciles the Planck-scale huge vacuum energy–density predicted by QFT considerations, as valid for Planck-seed universes, with the observed small value of the cosmological constant as relevant to an a-derivable universe as observed.


2008 ◽  
Vol 17 (13n14) ◽  
pp. 2467-2474 ◽  
Author(s):  
SONG HE ◽  
HONGBAO ZHANG

We propose, as a compelling pattern for the holographic principle, a covariant entropy bound conjecture for more general dynamical horizons. Then we apply our conjecture to ΛCDM cosmological models, where we find that it imposes a novel upper bound, 10-90, on the cosmological constant for our own universe by taking into account the dominant entropy contribution from supermassive black holes, which thus provides an alternative macroscopic perspective for understanding the long-standing cosmological constant problem. As an intriguing implication of this conjecture, we also discuss the possible profound relation between the present cosmological constant, the origin of mass, and the anthropic principle.


Author(s):  
Engel Roza

By solving the weak field limit of Einstein’s Field Equation including the Cosmological Constant, under the constraint of spherical isotropy, it is shown that, at large cosmological distance, the gravitational force exceeds the one that is predicted by Newton’s gravity law, such that it corresponds with Milgrom’s MOND hypothesis. However, the resulting prediction that, at extremely large distances, gravity with some spatial periodicity turns on-and-off into antigravity marks a decisive difference.


Author(s):  
Engel Roza

By solving the weak field limit of Einstein’s Field Equation including the Cosmological Constant, under the constraint of spherical isotropy, it is shown that, at large cosmological distance, the gravitational force exceeds the one that is predicted by Newton’s gravity law, such that it corresponds with Milgrom’s MOND hypothesis.  However, the resulting prediction that, at extremely large distances, gravity with some spatial periodicity turns on-and-off into antigravity marks a decisive difference.


Author(s):  
Engel Roza

By solving the weak field limit of Einstein’s Field Equation including the Cosmological Constant, under the constraint of spherical isotropy, it is shown that, at large cosmological distance, the gravitational force exceeds the one that is predicted by Newton’s gravity law, such that it corresponds with Milgrom’s MOND hypothesis. However, the resulting prediction that, at extremely large distances, gravity with some spatial periodicity turns on-and-off into antigravity marks a decisive difference.


Sign in / Sign up

Export Citation Format

Share Document