scholarly journals Numerical Solution of Two-Dimensional Fredholm–Volterra Integral Equations of the Second Kind

Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1326
Author(s):  
Sanda Micula

The paper presents an iterative numerical method for approximating solutions of two-dimensional Fredholm–Volterra integral equations of the second kind. As these equations arise in many applications, there is a constant need for accurate, but fast and simple to use numerical approximations to their solutions. The method proposed here uses successive approximations of the Mann type and a suitable cubature formula. Mann’s procedure is known to converge faster than the classical Picard iteration given by the contraction principle, thus yielding a better numerical method. The existence and uniqueness of the solution is derived under certain conditions. The convergence of the method is proved, and error estimates for the approximations obtained are given. At the end, several numerical examples are analyzed, showing the applicability of the proposed method and good approximation results. In the last section, concluding remarks and future research ideas are discussed.

2009 ◽  
Vol 40 (1) ◽  
pp. 19-29 ◽  
Author(s):  
P. Prakash ◽  
V. Kalaiselvi

In this paper, we study the existence and uniqueness of solutions for a class of fuzzy Volterra integral equations with infinite delay by using the method of successive approximations.


Author(s):  
Sumbal Ahsan ◽  
Rashid Nawaz ◽  
Muhammad Akbar ◽  
Kottakkaran Sooppy Nisar ◽  
Dumitru Baleanu

1996 ◽  
Vol 7 (3) ◽  
pp. 237-247 ◽  
Author(s):  
L. Prigozhin

We consider two-dimensional and axially symmetric critical-state problems in type-II superconductivity, and show that these problems are equivalent to evolutionary quasi-variational inequalities. In a special case, where the inequalities become variational, the existence and uniqueness of the solution are proved.


Sign in / Sign up

Export Citation Format

Share Document