scholarly journals Influence of Wind Speed, Wind Direction and Turbulence Model for Bridge Hanger: A Case Study

Symmetry ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1633
Author(s):  
Yang Ding ◽  
Shuang-Xi Zhou ◽  
Yong-Qi Wei ◽  
Tong-Lin Yang ◽  
Jing-Liang Dong

Wind field (e.g., wind speed and wind direction) has the characteristics of randomness, nonlinearity, and uncertainty, which can be critical and even destructive on a long-span bridge’s hangers, such as vortex shedding, galloping, and flutter. Nowadays, the finite element method is widely used for model calculation, such as in long-span bridges and high-rise buildings. In this study, the investigated bridge hanger model was established by COMSOL Multiphysics software, which can calculate fluid dynamics (CFD), solid mechanics, and fluid–solid coupling. Regarding the wind field of bridge hangers, the influence of CFD models, wind speed, and wind direction are investigated. Specifically, the bridge hanger structure has symmetrical characteristics, which can greatly reduce the calculation efficiency. Furthermore, the von Mises stress of bridge hangers is calculated based on fluid–solid coupling.

2015 ◽  
Vol 100 ◽  
pp. 468-478 ◽  
Author(s):  
Bejoy P. Alduse ◽  
Sungmoon Jung ◽  
O. Arda Vanli ◽  
Soon-Duck Kwon

2020 ◽  
Author(s):  
Xiaoman Liu

<p>       Higher and denser building groups are the most concentrated reflection of urbanization on the underlying surface reconstruction. With the continuous city expanding, urban wind field structure was changed, also the aerodynamic parameters dependent on. Based on observational data (slow-response) collected at 15 levels on Beijing 325m meteorological tower from 1991-2018, time and vertical trends of atmospheric stability, wind direction, wind speed, aerodynamic parameters were analyzed. Through Sen's slope, Mann-Kendall trend test and mutation analysis, we believe that urbanization has made a significant influence on local meteorological condition, and all the above variables mutated around the year of 1999. Before 1999, the proportion of neutral and unstable conditions declined with a trend of -0.63% and -2.0% per year respectively, and increased with a trend of +0.08% and +0.06% per year after 1999. As for wind direction, the dominant wind direction below 47m turned from southwest/northwest before 1999 to southeast after 1999, while above 47m remain unchanged as southeast, reflecting that the action range of urban impact is clearly distinguished from that of atmospheric background field. In terms of wind speed, the annual mean value trended to decrease at -0.0019m/s per year, and vertical wind speed trended to increased with height (per meter) at m/s per year, which reflected the continuous enhancement of attenuation effect of complex underlying on the near-ground wind speed. Furthermore, we found that although there was indeed a weaken tendency for wind speed in Beijing urban areas, but near neutral wind speed maintained a growth trend under 140m during 1999-2018. It was possible the deal with urban wake effect, wind field structure mutation or turbulence effect. Aerodynamic parameters  and d have undergone significant changes during the peak stage of urbanization, and tended to develop steadily with a 7-years fluctuations trend after that. In the past 28 years, d has increased from 1.34m in 1991 to 26.19m in 2018, while  has decreased from 2.75m to 1.02m. This is due to the fact that the increase of buildings average height is the result of roughness superposition. If the 7-year fluctuations trend continues, d of Beijing urban area will soon enter the next uplift period, during which the wind speed may increase slightly under nearly neutral conditions, and the cleaning effect on the pollution may be gradually enhanced.</p><p> </p>


2016 ◽  
Vol 20 (10) ◽  
pp. 1599-1611 ◽  
Author(s):  
Peng Hu ◽  
Yongle Li ◽  
Yan Han ◽  
CS Cai ◽  
Guoji Xu

Characteristics of wind fields over the gorge or valley terrains are becoming more and more important to the structural wind engineering. However, the studies on this topic are very limited. To obtain the fundamental characteristics information about the wind fields over a typical gorge terrain, a V-shaped simplified gorge, which was abstracted from some real deep-cutting gorges where long-span bridges usually straddle, was introduced in the present wind tunnel studies. Then, the wind characteristics including the mean wind speed, turbulence intensity, integral length scale, and the wind power spectrum over the simplified gorge were studied in a simulated atmospheric boundary layer. Furthermore, the effects of the oncoming wind field type and oncoming wind direction on these wind characteristics were also investigated. The results show that compared with the oncoming wind, the wind speeds at the gorge center become larger, but the turbulence intensities and the longitudinal integral length scales become smaller. Generally, the wind fields over the gorge terrain can be approximately divided into two layers, that is, the gorge inner layer and the gorge outer layer. The different oncoming wind field types have remarkable effects on the mean wind speed ratios near the ground. When the angle between the oncoming wind and the axis of the gorge is in a certain small range, such as smaller than 10°, the wind fields are very close to those associated with the wind direction of 0°. However, when the angle is in a larger range, such as larger than 20°, the wind fields in the gorge will significantly change. The research conclusions can provide some references for civil engineering practices regarding the characteristics of wind fields over the real gorge terrains.


Author(s):  
Jiunn-Yin Tsay

To meet the need of constructing fixed cross strait links, super-long span bridge with a main span over 2 000[Formula: see text]m is considered as a candidate for their ability to cross deep and wide straits. To this end, some super-long span bridges with proper cable and girder systems were previously proposed and studied. The major design considerations are aimed at adopting new cable material, increasing the entire rigidity of the bridge, stabilizing the dynamic characteristics, strengthening the deck sections, etc. In this paper, a brief review of main cable and girder system is first given of the concepts previously proposed for the design of super-long span bridges. Then some typical examples are studied, focused on various issues related to the design of super-long span bridges, including composite cable, the unstressed length and tension force of the main cable, the stiffness and mass effects of the deck on critical wind speed, and the critical wind speed of various cable systems. The most challenges in super-long span bridges are to solve aerostatic and aerodynamic instability at required design wind speed. In this connection, the wind-induced aerostatic instability of super-long span bridges is studied by a two-stage geometric nonlinear analysis for dead loads and wind loads. The developed program adopted herein for geometric nonlinear analysis was verified and confirmed before. The proposed methods (i.e. composite cable, slotted girder, increasing deck stiffness and mass, cable layout, etc.) obtained for all the examples are in agreement with this study, which indicates applicability of the design approaches presented.


2019 ◽  
Vol 9 (24) ◽  
pp. 5506
Author(s):  
Zidong Xu ◽  
Hao Wang ◽  
Han Zhang ◽  
Kaiyong Zhao ◽  
Hui Gao ◽  
...  

Numerical simulation of the turbulent wind field on long-span bridges is an important task in structural buffeting analysis when it comes to the system non-linearity. As for non-stationary extreme wind events, some efforts have been paid to update the classic spectral representation method (SRM) and the fast Fourier transform (FFT) has been introduced to improve the computational efficiency. Here, the non-negative matrix factorization-based FFT-aided SRM has been updated to generate not only the horizontal non-stationary turbulent wind field, but also the vertical one. Specifically, the evolutionary power spectral density (EPSD) is estimated to characterize the non-stationary feature of the field-measured wind data during Typhoon Wipha at the Runyang Suspension Bridge (RSB) site. The coherence function considering the phase angles is utilized to generate the turbulent wind fields for towers. The simulation accuracy is validated by comparing the simulated and target auto-/cross-correlation functions. Results show that the updated method performs well in generating the non-stationary turbulent wind field. The obtained wind fields will provide the research basis for analyzing the non-stationary buffeting behavior of the RSB and other wind-sensitive structures in adjacent regions.


Sensors ◽  
2019 ◽  
Vol 19 (18) ◽  
pp. 3955 ◽  
Author(s):  
Shiping Huang ◽  
Wei Ding ◽  
Yonghui Huang

Image measurement methods have been widely used in broad areas due to their accuracy and efficiency. However, current techniques usually involve complex calibration, an elaborate optical design, or sensitivity to the test environment. In this paper, a simple optical device was designed to emit parallel beams to obtain a virtual scale for measurement purposes. The proposed theory ensures the robustness of the system when obtaining each scale in the presence of uncertainty. The scale creates a mapping from image coordinates to world coordinates. By using the moving least squares (MLS) method, a full-field scale map can be reconstructed to achieve high-precision measurement at the sub-pixel level. Experimental verifications are carried out, showing that the proposed method provides very accurate and reliable results. The proposed approach is simple in terms of equipment, and the scale can be automatically calculated. Therefore, the system proposed in this paper is a promising candidate as a tool for non-contacting measurements (e.g., the crack development, geometric size) in the inaccessible structures such as high-rise buildings and long-span bridges.


2021 ◽  
Vol 14 (9) ◽  
Author(s):  
Aishah Al Yammahi ◽  
Prashanth R. Marpu ◽  
Taha B. M. J. Ouarda

AbstractModeling wind speed and direction are crucial in several applications such as the estimation of wind energy potential and the study of the long-term effects on engineering structures. While there have been several studies on modeling wind speed, studies on modeling wind direction are limited. In this work, we use a mixture of von Mises distributions to model wind direction. Finite mixtures of von Mises (FMVM) distributions are used to model wind directions at two sites in the United Arab Emirates. The parameters of the FMVM distribution are estimated using the least square method. The results of the research show that the FMVM is the best suited distribution model to fit wind direction at these two sites, compared to other distributions commonly used to model wind direction.


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 493
Author(s):  
Jiaxing Hu ◽  
Zhengnong Li ◽  
Zhefei Zhao

The field measurement of wind-induced response is of great significance to the wind resistance design of high-rise buildings, in particular torsional responses measured from high-rise buildings under typhoons. The measured high-rise building, with a height of 108 m, has 32 stories and is supported by giant trusses with four massive columns. Acceleration responses along translational and torsional directions were monitored synchronously and continuously during the passage of Typhoon Sarika on 18 October 2016. The wind speed and wind direction at the height of 115 m, the translational accelerations on a total of six floors and the angular accelerations on a total of four floors were recorded. The time and frequency domain characteristics of translational acceleration and torsional angular accelerations were analyzed. The amplitude-dependent translational and torsional modal frequencies of the measured building were identified by NExT-ERA, SSI, and RDT methods. The full-scale study is expected to provide useful information on the wind-resistant design of high-rise buildings in typhoon-prone regions.


Sign in / Sign up

Export Citation Format

Share Document