scholarly journals Dynamical Reason for a Cyclic Universe

Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2272
Author(s):  
Ying-Qiu Gu

By analyzing the energy-momentum tensor and equations of state of ideal gas, scalar, spinor and vector potential in detail, we find that the total mass density of all matter is always positive, and the initial total pressure is negative. Under these conditions, by qualitatively analyzing the global behavior of the dynamical equation of cosmological model, we get the following results: (i) K=1, namely, the global spatial structure of the universe should be a three-dimensional sphere S3; (ii) 0≤Λ<10−24ly−2, the cosmological constant should be zero or an infinitesimal; (iii) a(t)>0, the initial singularity of the universe is unreachable, and the evolution of the universe should be cyclic in time. Since the matter components considered are quite complete and the proof is very elementary and strict, these conclusions are quite reliable in logic and compatible with all observational data. Obviously, these conclusions will be very helpful to correct some popular misconceptions and bring great convenience to further research other problems in cosmology such as the properties of dark matter and dark energy. In addition, the macroscopic Lagrangian of fluid model is derived.

Author(s):  
Ying-Qiu Gu

In cosmology, the cosmic curvature $K$ and the cosmological constant $\Lambda$ are two most important parameters, whose values have strong influence on the behavior of the universe. By analyzing the energy-momentum tensor and equations of state of ideal gas, scalar, spinor and vector potential in detail, we find that the total mass density of all matter is always positive, and the initial total pressure is negative. Under these conditions, by qualitatively analyzing the global behavior of the dynamical equation of cosmological model, we get the following results: (i) $K= 1$, namely, the global spatial structure of the universe should be a 3-dimensional sphere $S^3$. (ii) $0\le\Lambda &lt; 10 ^ {-24} {\rm ly} ^ {-2}$, the cosmological constant should be zero or an infinitesimal. (iii) $a(t)&gt;0$, the initial singularity of the universe is unreachable, and the evolution of universe should be cyclic in time. This means that the initial Big Bang is impossible at all. Since the matter components considered are quite complete and the proof is very elementary and strict, these logical conclusions should be quite reliable. Obviously, these conclusions will be much helpful to correct some popular misconceptions and bring great convenience to further research other problems in cosmology such as property of dark matter and dark energy.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Konrad Schatz ◽  
Horst-Heino von Borzeszkowski ◽  
Thoralf Chrobok

We determine the energy-momentum tensor of nonperfect fluids in thermodynamic equilibrium and, respectively, near to it. To this end, we derive the constitutive equations for energy density and isotropic and anisotropic pressure as well as for heat-flux from the corresponding propagation equations and by drawing on Einstein’s equations. Following Obukhov on this, we assume the corresponding space-times to be conform-stationary and homogeneous. This procedure provides these quantities in closed form, that is, in terms of the structure constants of the three-dimensional isometry group of homogeneity and, respectively, in terms of the kinematical quantities expansion, rotation, and acceleration. In particular, we find a generalized form of the Friedmann equations. As special cases we recover Friedmann and Gödel models as well as nontilted Bianchi solutions with anisotropic pressure. All of our results are derived without assuming any equations of state or other specific thermodynamic conditions a priori. For the considered models, results in literature are generalized to rotating fluids with dissipative fluxes.


2018 ◽  
Vol 5 (1) ◽  
Author(s):  
Jan de Boer ◽  
Jelle Hartong ◽  
Niels Obers ◽  
Watse Sybesma ◽  
Stefan Vandoren

We present a systematic treatment of perfect fluids with translation and rotation symmetry, which is also applicable in the absence of any type of boost symmetry. It involves introducing a fluid variable, the kinetic mass density, which is needed to define the most general energy-momentum tensor for perfect fluids. Our analysis leads to corrections to the Euler equations for perfect fluids that might be observable in hydrodynamic fluid experiments. We also derive new expressions for the speed of sound in perfect fluids that reduce to the known perfect fluid models when boost symmetry is present. Our framework can also be adapted to (non-relativistic) scale invariant fluids with critical exponent zz. We show that perfect fluids cannot have Schrödinger symmetry unless z=2z=2. For generic values of zz there can be fluids with Lifshitz symmetry, and as a concrete example, we work out in detail the thermodynamics and fluid description of an ideal gas of Lifshitz particles and compute the speed of sound for the classical and quantum Lifshitz gases.


Author(s):  
Karen F. Han

The primary focus in our laboratory is the study of higher order chromatin structure using three dimensional electron microscope tomography. Three dimensional tomography involves the deconstruction of an object by combining multiple projection views of the object at different tilt angles, image intensities are not always accurate representations of the projected object mass density, due to the effects of electron-specimen interactions and microscope lens aberrations. Therefore, an understanding of the mechanism of image formation is important for interpreting the images. The image formation for thick biological specimens has been analyzed by using both energy filtering and Ewald sphere constructions. Surprisingly, there is a significant amount of coherent transfer for our thick specimens. The relative amount of coherent transfer is correlated with the relative proportion of elastically scattered electrons using electron energy loss spectoscopy and imaging techniques.Electron-specimen interactions include single and multiple, elastic and inelastic scattering. Multiple and inelastic scattering events give rise to nonlinear imaging effects which complicates the interpretation of collected images.


2020 ◽  
Vol 23 (3) ◽  
pp. 306-311
Author(s):  
Yu. Kurochkin ◽  
Dz. Shoukavy ◽  
I. Boyarina

The immobility of the center of mass in spaces of constant curvature is postulated based on its definition obtained in [1]. The system of two particles which interact through a potential depending only on the distance between particles on a three-dimensional sphere is considered. The Hamilton-Jacobi equation is formulated and its solutions and trajectory equations are found. It was established that the reduced mass of the system depends on the relative distance.


2015 ◽  
Vol 11 (1) ◽  
pp. 2927-2949
Author(s):  
Lyubov E. Lokot

In the paper a theoretical study the both the quantized energies of excitonic states and their wave functions in grapheneand in materials with "Mexican hat" band structure dispersion as well as in zinc-blende GaN is presented. An integral twodimensionalSchrödinger equation of the electron-hole pairing for a particles with electron-hole symmetry of reflection isexactly solved. The solutions of Schrödinger equation in momentum space in studied materials by projection the twodimensionalspace of momentum on the three-dimensional sphere are found exactly. We analytically solve an integral twodimensionalSchrödinger equation of the electron-hole pairing for particles with electron-hole symmetry of reflection. Instudied materials the electron-hole pairing leads to the exciton insulator states. Quantized spectral series and lightabsorption rates of the excitonic states which distribute in valence cone are found exactly. If the electron and hole areseparated, their energy is higher than if they are paired. The particle-hole symmetry of Dirac equation of layered materialsallows perfect pairing between electron Fermi sphere and hole Fermi sphere in the valence cone and conduction cone andhence driving the Cooper instability. The solutions of Coulomb problem of electron-hole pair does not depend from a widthof band gap of graphene. It means the absolute compliance with the cyclic geometry of diagrams at justification of theequation of motion for a microscopic dipole of graphene where >1 s r . The absorption spectrums for the zinc-blendeGaN/(Al,Ga)N quantum well as well as for the zinc-blende bulk GaN are presented. Comparison with availableexperimental data shows good agreement.


2017 ◽  
Vol 923 (5) ◽  
pp. 7-16
Author(s):  
A.V. Kavrayskiy

The experience of mathematical modeling of the 3D-sphere in the 4D-space and projecting it by mathematical cartography methods in the 3D-Euclidian space is presented. The problem is solved by introduction of spherical coordinates for the 3D-sphere and their transformation into the rectangular coordinates, using the mathematical cartography methods. The mathematical relationship for calculating the length distortion mp(s) of the ds linear element when projecting the 3D-sphere from the 4-dimensional Euclidian space into three-dimensional Euclidian space is derived. Numerical examples, containing the modeling of the ds small linear element by spherical coordinates of 3D-sphere, projecting this sphere into the 3D-Euclidian space and length of ds calculating by means of its projection dL and size of distortion mp(s) are solved. Based on the model of the Universe known in cosmology as the 3D-sphere, the hypothesis of connection between distortion mp(s) and the known observed effects Redshift and Microwave Background Radiation is considered.


2021 ◽  
Vol 31 (1) ◽  
Author(s):  
Shin Yu ◽  
Chang Tang Chang ◽  
Chih Ming Ma

AbstractThe traffic congestion in the Hsuehshan tunnel and at the Toucheng interchange has led to traffic-related air pollution with increasing concern. To ensure the authenticity of our simulation, the concentration of the last 150 m in Hsuehshan tunnel was simulated using the computational fluid dynamics fluid model. The air quality at the Toucheng interchange along a 2 km length highway was simulated using the California Line Source Dispersion Model. The differences in air quality between rush hours and normal traffic conditions were also investigated. An unmanned aerial vehicle (UAV) with installed PM2.5 sensors was developed to obtain the three-dimensional distribution of pollutants. On different roads, during the weekend, the concentrations of pollutants such as SOx, CO, NO, and PM2.5 were observed to be in the range of 0.003–0.008, 7.5–15, 1.5–2.5 ppm, and 40–80 μg m− 3, respectively. On weekdays, the vehicle speed and the natural wind were 60 km h− 1 and 2.0 m s− 1, respectively. On weekdays, the SOx, CO, NO, and PM2.5 concentrations were found to be in the range of 0.002–0.003, 3–9, 0.7–1.8 ppm, and 35–50 μg m− 3, respectively. The UAV was used to verify that the PM2.5 concentrations of vertical changes at heights of 9.0, 7.0, 5.0, and 3.0 m were 45–48, 30–35, 25–30, and 50–52 μg m− 3, respectively. In addition, the predicted PM2.5 concentrations were 40–45, 25–30, 45–48, and 45–50 μg m− 3 on weekdays. These results provide a reference model for environmental impact assessments of long tunnels and traffic jam-prone areas. These models and data are useful for transportation planners in the context of creating traffic management plans.


2017 ◽  
Vol 58 ◽  
pp. 6.1-6.36 ◽  
Author(s):  
I. Gultepe ◽  
A. J. Heymsfield ◽  
P. R. Field ◽  
D. Axisa

AbstractIce-phase precipitation occurs at Earth’s surface and may include various types of pristine crystals, rimed crystals, freezing droplets, secondary crystals, aggregates, graupel, hail, or combinations of any of these. Formation of ice-phase precipitation is directly related to environmental and cloud meteorological parameters that include available moisture, temperature, and three-dimensional wind speed and turbulence, as well as processes related to nucleation, cooling rate, and microphysics. Cloud microphysical parameters in the numerical models are resolved based on various processes such as nucleation, mixing, collision and coalescence, accretion, riming, secondary ice particle generation, turbulence, and cooling processes. These processes are usually parameterized based on assumed particle size distributions and ice crystal microphysical parameters such as mass, size, and number and mass density. Microphysical algorithms in the numerical models are developed based on their need for applications. Observations of ice-phase precipitation are performed using in situ and remote sensing platforms, including radars and satellite-based systems. Because of the low density of snow particles with small ice water content, their measurements and predictions at the surface can include large uncertainties. Wind and turbulence affecting collection efficiency of the sensors, calibration issues, and sensitivity of ground-based in situ observations of snow are important challenges to assessing the snow precipitation. This chapter’s goals are to provide an overview for accurately measuring and predicting ice-phase precipitation. The processes within and below cloud that affect falling snow, as well as the known sources of error that affect understanding and prediction of these processes, are discussed.


Sign in / Sign up

Export Citation Format

Share Document