scholarly journals Excess Zinc Supply Reduces Cadmium Uptake and Mitigates Cadmium Toxicity Effects on Chloroplast Structure, Oxidative Stress, and Photosystem II Photochemical Efficiency in Salvia sclarea Plants

Toxics ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 36
Author(s):  
Ilektra Sperdouli ◽  
Ioannis-Dimosthenis S. Adamakis ◽  
Anelia Dobrikova ◽  
Emilia Apostolova ◽  
Anetta Hanć ◽  
...  

Salvia sclarea L. is a Cd2+ tolerant medicinal herb with antifungal and antimicrobial properties cultivated for its pharmacological properties. However, accumulation of high Cd2+ content in its tissues increases the adverse health effects of Cd2+ in humans. Therefore, there is a serious demand to lower human Cd2+ intake. The purpose of our study was to evaluate the mitigative role of excess Zn2+ supply to Cd2+ uptake/translocation and toxicity in clary sage. Salvia plants were treated with excess Cd2+ (100 μM CdSO4) alone, and in combination with Zn2+ (900 μM ZnSO4), in modified Hoagland nutrient solution. The results demonstrate that S. sclarea plants exposed to Cd2+ toxicity accumulated a significant amount of Cd2+ in their tissues, with higher concentrations in roots than in leaves. Cadmium exposure enhanced total Zn2+ uptake but also decreased its translocation to leaves. The accumulated Cd2+ led to a substantial decrease in photosystem II (PSII) photochemistry and disrupted the chloroplast ultrastructure, which coincided with an increased lipid peroxidation. Zinc application decreased Cd2+ uptake and translocation to leaves, while it mitigated oxidative stress, restoring chloroplast ultrastructure. Excess Zn2+ ameliorated the adverse effects of Cd2+ on PSII photochemistry, increasing the fraction of energy used for photochemistry (ΦPSII) and restoring PSII redox state and maximum PSII efficiency (Fv/Fm), while decreasing excess excitation energy at PSII (EXC). We conclude that excess Zn2+ application eliminated the adverse effects of Cd2+ toxicity, reducing Cd2+ uptake and translocation and restoring chloroplast ultrastructure and PSII photochemical efficiency. Thus, excess Zn2+ application can be used as an important method for low Cd2+-accumulating crops, limiting Cd2+ entry into the food chain.

Author(s):  
Ioannis-Dimosthenis S. Adamakis ◽  
Ilektra Sperdouli ◽  
Anetta Hanć ◽  
Anelia Dobrikova ◽  
Emilia Apostolova ◽  
...  

Five-day exposure of clary sage (Salvia sclarea) to 100 μM cadmium (Cd) in hydroponics was sufficient to increase Cd concentrations significantly in roots and aboveground parts and affect negatively whole plant levels of calcium (Ca) and magnesium (Mg), since Cd competes for Ca channels, while reduced Mg concentrations are associated with increased Cd tolerance. Total zinc (Zn), copper (Cu), and iron (Fe) uptake increased but their translocation to the aboveground parts decreased possible due to translocation barriers. Despite the substantial levels of Cd in leaves, without any observed defects on chloroplast ultrastructure, an enhanced photosystem II (PSII) efficiency was observed, with a higher fraction of absorbed light energy to be directed to photochemistry (ΦPSΙΙ). The concomitant increase in the photoprotective mechanism of non-photochemical quenching of photosynthesis (NPQ) resulted in an important decrease in the dissipated non-regulated energy (ΦNO), modifying the homeostasis of reactive oxygen species (ROS), through a decreased singlet oxygen (1O2) formation. Thus, when clary sage was exposed to Cd for a short period, tolerance mechanisms were triggered, with PSII photochemistry to be regulated by NPQ in such a way that PSII efficiency to be enhanced. However, exposure to a combination of Cd and high light or for longer duration (8 days) to Cd alone, resulted in an inhibition of PSII functionality pointing out towards Cd toxicity. Thus, the rapid activation of PSII functionality at short time exposures and the inhibition at longer duration suggests a hormetic response and describes these effects in terms of “adaptive response” and “toxicity”, respectively.


2021 ◽  
Vol 209 ◽  
pp. 111851
Author(s):  
Anelia G. Dobrikova ◽  
Emilia L. Apostolova ◽  
Anetta Hanć ◽  
Ekaterina Yotsova ◽  
Preslava Borisova ◽  
...  

Author(s):  
Kazuki Kojima ◽  
Hidenori Ichijo ◽  
Isao Naguro

Summary VCells are constantly exposed to various types of stress, and disruption of the proper response lead to a variety of diseases. Among them, inflammation and apoptosis are important examples of critical responses and should be tightly regulated, as inappropriate control of these responses is detrimental to the organism. In several disease states, these responses are abnormally regulated, with adverse effects. Apoptosis signal-regulating kinase (ASK) family members are stress-responsive kinases that regulate inflammation and apoptosis after a variety of stimuli, such as oxidative stress and endoplasmic reticulum (ER) stress. In this review, we summarize recent reports on the ASK family in terms of their involvement in inflammatory diseases, focusing on upstream stimuli that regulate ASK family members.


2007 ◽  
Vol 37 (4) ◽  
pp. 533-541 ◽  
Author(s):  
Denize Caranhas de Sousa Barreto ◽  
José Francisco de Carvalho Gonçalves ◽  
Ulysses Moreira dos Santos Júnior ◽  
Andreia Varmes Fernandes ◽  
Adriana Bariani ◽  
...  

The rosewood (Aniba rosaeodora Ducke) is a native tree species of Amazon rainforest growing naturally in acidic forest soils with reduced redox potential. However, this species can also been found growing in forest gaps containing oxide soils. Variations in the forms of mineral nitrogen (NO3- or NH4+) may be predicted in these different edaphic conditions. Considering that possibility, an experiment was carried out to analyze the effects of different NO3-:NH4+ ratios on the growth performance, mineral composition, chloroplastid pigment contents, photochemical efficiency photosystem II (PSII), and nitrate redutase activity (RN, E.C.1.6.6.1) on A. rosaeodora seedlings. Nine-month-old seedlings were grown in pots with a washed sand capacity of 7.5 kg and submitted to different NO3-:NH4+ ratios (T1 = 0:100%, T2 = 25:75%, T3 = 50:50%, T4 = 75:25%, and T5 = 100:0%). The lowest relative growth rate was observed when the NO3-:NH4+ ratio was equal to 0:100%. In general, high concentrations of NO3- rather than NH4+ favored a greater nutrient accumulation in different parts of the plant. For the chloroplastid pigment, the highest Chl a, Chl b, Chl tot, Chl a/b and Chl tot/Cx+c contents were found in the treatment with 75:25% of NO3-:NH4+, and for Chl b and Cx+c it was observed no difference. In addition, there was a higher photochemical efficiency of PSII (Fv/Fm) when high NO3- concentrations were used. A linear and positive response for the nitrate reductase activity was recorded when the nitrate content increased on the culture substrate. Our results suggest that A. rosaeodora seedlings have a better growth performance when the NO3- concentrations in the culture substrate were higher than the NH4+ concentrations.


Fagopyrum ◽  
2021 ◽  
Vol 38 (1) ◽  
pp. 15-23
Author(s):  
Aleksandra Golob ◽  
Neja Luzar ◽  
Mateja Germ

Common buckwheat and Tartary buckwheat were grown in Slovenia outdoors at different elevations – 300 m, 600 m and 1180 m a.s.l. Both species were foliarly treated with selenium twice (in the vegetative phase and in the flowering phase). The effects of Se treatment and different growing locations on selected biochemical, physiological and anatomical traits were monitored. In Se treated common buckwheat, amount of chlorophylls was higher in plants from Ljubljana (the lowest elevation – 300 m a.s.l.) than in plants grown in Podbeže (600 m a.s.l.), whereas in control group, plants grown in Ljubljana contained more chlorophylls than plants from Javorje (the highest elevation – 1180 m a.s.l.). In both buckwheat species, Se alone did not affect amount of chlorophylls in any of location. In Se treated common buckwheat plants, the amount of UV absorbing compounds was the highest in plants, grown at the highest elevation. In common buckwheat, Se lowered the number of CaOx in plants, grown in Javorje. Conditions at different elevations, as well as treatments with Se, did not affect potential and effective photochemical efficiency of Photosystem II. Keywords: common buckwheat, Tartary buckwheat, elevation, selenium, morphological characteristics, biochemical characteristics


2021 ◽  
Author(s):  
Takehiro Kazama ◽  
Kazuhide Hayakawa ◽  
Takamaru Nagata ◽  
Koichi Shimotori ◽  
Akio Imai ◽  
...  

Field observations of the population dynamics and measurements of photophysiology in Lake Biwa were conducted by size class (< vs. > 30 μm) from early summer to autumn to investigate the relationships between susceptibility to light stress and cell size. Also, a nutrient bioassay was conducted to clarify whether the growth rate and photosystem II (PSII) photochemistry of small and large phytoplankton are limited by nutrient availability. Large phytoplankton, which have lower intracellular Chl-a concentrations, had higher maximum PSII photochemical efficiency (Fv/Fm) but lower non-photochemical quenching (NPQNSV) than small phytoplankton under both dark and increased light conditions. The nutrient bioassay revealed that the PSII photochemistry of small phytoplankton was restricted by N and P deficiency at the pelagic site even at the end of the stratification period, while that of large phytoplankton was not. These results suggest that large phytoplankton have lower susceptibility to PSII photodamage than small phytoplankton due to lower intracellular Chl-a concentrations. The size dependency of susceptibility to PSII photoinactivation may play a key role in large algal blooms in oligotrophic water.


2006 ◽  
Vol 29 (4) ◽  
pp. 591-595 ◽  
Author(s):  
Panagiotis Misthos ◽  
Stylianos Katsaragakis ◽  
Dimitrios Theodorou ◽  
Nikolaos Milingos ◽  
Ioannis Skottis

Sign in / Sign up

Export Citation Format

Share Document