scholarly journals Spontaneous μ-τ Reflection Symmetry Breaking in Neutrino Phenomenology

Universe ◽  
2018 ◽  
Vol 4 (12) ◽  
pp. 141 ◽  
Author(s):  
Guo-Yuan Huang ◽  
Zhi-Zhong Xing ◽  
Jing-Yu Zhu

The latest global analysis of neutrino oscillation data indicates that the normal neutrino mass ordering is favored over the inverted one at the 3 σ level. The best-fit values of the largest neutrino mixing angle θ 23 and the Dirac CP-violating phase δ are located in the higher octant and the third quadrant, respectively. We show that these experimental trends can be naturally explained by the μ - τ reflection symmetry breaking, triggered by the one-loop renormalization-group equations (RGEs) running from a superhigh energy scale down to the electroweak scale in the framework of the minimal supersymmetric standard model (MSSM). The complete parameter space is numerically explored for both the Majorana and Dirac cases, by allowing the smallest neutrino mass m 1 and the MSSM parameter tan β to vary within their reasonable ranges.

2004 ◽  
Vol 19 (34) ◽  
pp. 2579-2586 ◽  
Author(s):  
AMBAR GHOSAL

We demonstrate that an SU (2)L× U (1)Y model with the same particle content as Standard Model (SM) and discrete reflection symmetry between second and third generations of leptons gives rise to charged lepton and neutrino mass matrices which can accommodate the present solar, atmospheric, WMAP neutrino experimental results. The model predicts the value of |U13| which could be tested in neutrino factories and the effective Majorana neutrino mass <mee> which is at the lower end of the present experimental value. Neutrino masses are generated through dim=5 operators and the scale of which are constrained by the value of <mee>. If, in future neutrinoless double beta decay experiments namely, MOON, EXO, GENIUS shift the lower bound on <mee> by one order, the present model will fail to accommodate the solar neutrino mixing angle due to LMA solution.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Kalpana Bora ◽  
Gayatri Ghosh ◽  
Debajyoti Dutta

In a recent work by us, we have studied how CP violation discovery potential can be improved at long baseline neutrino experiments (LBNE/DUNE), by combining with its ND (near detector) and reactor experiments. In this work, we discuss how this study can be further analysed to resolve entanglement of the quadrant of leptonic CPV phase and octant of atmospheric mixing angleθ23, at LBNEs. The study is done for both NH (normal hierarchy) and IH (inverted hierarchy), HO (higher octant), and LO (lower octant). We show how baryogenesis can enhance the effect of resolving this entanglement and how possible values of the leptonic CP violating phaseδCPcan be predicted in this context. With respect to the latest global fit data of neutrino mixing angles, we predict the values ofδCPfor different cases. In this context we present favoured values ofδCP(δCPrange at ≥2σ) constrained by the latest updated BAU range and also confront our predictions ofδCPwith an up-to-date global analysis of neutrino oscillation data. We find that some region of the favouredδCPparameter space lies within the best fit values aroundδCP≃1.3π–1.4π. A detailed analytic and numerical study of baryogenesis through leptogenesis is performed in this framework within the nonsupersymmetric SO(10)models.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
P. F. de Salas ◽  
D. V. Forero ◽  
S. Gariazzo ◽  
P. Martínez-Miravé ◽  
O. Mena ◽  
...  

Abstract We present an updated global fit of neutrino oscillation data in the simplest three-neutrino framework. In the present study we include up-to-date analyses from a number of experiments. Concerning the atmospheric and solar sectors, besides the data considered previously, we give updated analyses of IceCube DeepCore and Sudbury Neutrino Observatory data, respectively. We have also included the latest electron antineutrino data collected by the Daya Bay and RENO reactor experiments, and the long-baseline T2K and NOνA measurements, as reported in the Neutrino 2020 conference. All in all, these new analyses result in more accurate measurements of θ13, θ12, $$ \Delta {m}_{21}^2 $$ Δ m 21 2 and $$ \left|\Delta {m}_{31}^2\right| $$ Δ m 31 2 . The best fit value for the atmospheric angle θ23 lies in the second octant, but first octant solutions remain allowed at ∼ 2.4σ. Regarding CP violation measurements, the preferred value of δ we obtain is 1.08π (1.58π) for normal (inverted) neutrino mass ordering. The global analysis still prefers normal neutrino mass ordering with 2.5σ statistical significance. This preference is milder than the one found in previous global analyses. These new results should be regarded as robust due to the agreement found between our Bayesian and frequentist approaches. Taking into account only oscillation data, there is a weak/moderate preference for the normal neutrino mass ordering of 2.00σ. While adding neutrinoless double beta decay from the latest Gerda, CUORE and KamLAND-Zen results barely modifies this picture, cosmological measurements raise the preference to 2.68σ within a conservative approach. A more aggressive data set combination of cosmological observations leads to a similar preference for normal with respect to inverted mass ordering, namely 2.70σ. This very same cosmological data set provides 2σ upper limits on the total neutrino mass corresponding to Σmν< 0.12 (0.15) eV in the normal (inverted) neutrino mass ordering scenario. The bounds on the neutrino mixing parameters and masses presented in this up-to-date global fit analysis include all currently available neutrino physics inputs.


2018 ◽  
Vol 2018 ◽  
pp. 1-16
Author(s):  
Madan Singh

We have studied that the implication of a large value of the effective Majorana neutrino mass in case of neutrino mass matrices has either two equal elements and one zero element (popularly known as hybrid texture) or two equal cofactors and one zero minor (popularly known as inverse hybrid texture) in the flavor basis. In each of these cases, four out of sixty phenomenologically possible patterns predict near maximal atmospheric neutrino mixing angle in the limit of large effective Majorana neutrino mass. This feature remains irrespective of the experimental data on solar and reactor mixing angles. In addition, we have also performed the comparative study of all the viable cases of hybrid and inverse hybrid textures at 3σ CL.


2013 ◽  
Vol 28 (24) ◽  
pp. 1350118 ◽  
Author(s):  
BISWAJIT ADHIKARY ◽  
AMBAR GHOSAL ◽  
PROBIR ROY

Within the type-I seesaw and in the basis where charged lepton and heavy neutrino mass matrices are real and diagonal, μτ symmetric four and three zero neutrino Yukawa textures are perturbed by lowest order μτ symmetry breaking terms. These perturbations are taken to be the most general ones for those textures. For quite small values of those symmetry breaking parameters, permitting a lowest order analysis, current best-fit ranges of neutrino mass squared differences and mixing angles are shown to be accommodable, including a value of θ13 in the observed range, provided all the light neutrinos have an inverted mass ordering.


2007 ◽  
Vol 16 (05) ◽  
pp. 1373-1381 ◽  
Author(s):  
TEPPEI BABA

The μ - τ symmetry can reproduce the consistent results with experimental data of θ13, and θ23 (θ13, and θ23 respectively denote the νe - ντ, and νμ - ντ, mixing angles). However, we can not address the issue of the leptonic CP violation in μ - τ symmetric models. So we add the μ - τ symmetry breaking part to include the CP violation. We characterize leptonic CP violation in terms of three phases, where one is conventional phase δ and others are additional phases ρ and γ. These δ, ρ and γ are, respectively, the phases of νe - ντ, νe - νμ and νμ - ντ mixings. The ρ and γ are redundant but the effect of ρ remains in the leptonic CP violation which is characterized by δ + ρ. The δ arises from the μ - τ symmetry breaking part of the Meμ and Meτ while ρ arises from of μ - τ symmetric part of the Meμ and Meτ, where Mij stands for ij (i,j = e,μ,τ) element of M(= [Formula: see text] for Mν being a flavor neutrino mass matrix). Moreover, θ23 can be exactly estimated to be: [Formula: see text] ( sin θ ∝ sin θ13 cos (δ + ρ)[Formula: see text], sin ϕ ∝ Mμμ - Mττ, where [Formula: see text] is the solar neutrino mass difference squared). The conditions of maximal atmospheric neutrino mixing are given by [Formula: see text] and Mμμ = Mττ,which indicate maximal Dirac CP violation.


2021 ◽  
Vol 81 (5) ◽  
Author(s):  
V. V. Vien

AbstractWe propose a non-renormalizable $$B-L$$ B - L model with $$S_{3}{\times Z_4\times Z_2}$$ S 3 × Z 4 × Z 2 symmetry which successfully accommodates the current active–sterile neutrino mixing in $$3+1$$ 3 + 1 scheme. The $$S_3$$ S 3 flavor symmetry is supplemented by $$Z_4\otimes Z_2$$ Z 4 ⊗ Z 2 symmetry to consolidate the Yukawa interaction of the model. The presence of $$S_3\otimes Z_4\otimes Z_2$$ S 3 ⊗ Z 4 ⊗ Z 2 flavour symmetry plays an important role in generating the desired structure of the neutrino mass matrix. The model can reproduce the recent observed active-neutrino neutrino oscillation data for normal ordering in which two sterile–active mixing angles $$\theta _{14, 24}$$ θ 14 , 24 get the best-fit values and the obtained values of $$\theta _{34}, \delta _{14}, \delta _{14}$$ θ 34 , δ 14 , δ 14 , the sum of neutrino mass and the effective neutrino masses are within their currently allowed ranges.


2017 ◽  
Vol 41 (12) ◽  
pp. 123103 ◽  
Author(s):  
Zhi-zhong Xing ◽  
Jing-yu Zhu

2018 ◽  
Vol 33 (02) ◽  
pp. 1850014 ◽  
Author(s):  
Jun-Hao Liu ◽  
Shun Zhou

The possible existence of an eV-mass sterile neutrino, slightly mixing with ordinary active neutrinos, is not yet excluded by neutrino oscillation experiments. Assuming neutrinos to be Majorana particles, we explore the impact of such a sterile neutrino on the effective neutrino mass of neutrinoless double-beta decays [Formula: see text], where [Formula: see text] and [Formula: see text] (for [Formula: see text]) denote respectively the absolute masses and the first-row elements of the [Formula: see text] neutrino flavor mixing matrix [Formula: see text], for which a full parametrization involves three Majorana-type CP-violating phases [Formula: see text]. A zero effective neutrino mass [Formula: see text] is possible, no matter whether three active neutrinos take the normal or inverted mass ordering, and its implications for the parameter space are examined in great detail. In particular, given the best-fit values of [Formula: see text] and [Formula: see text] from the latest global analysis of neutrino oscillation data, a three-dimensional view of [Formula: see text] in the [Formula: see text]-plane is presented and further compared with that of the counterpart [Formula: see text] in the absence of any sterile neutrino.


2014 ◽  
Vol 31 ◽  
pp. 1460312 ◽  
Author(s):  
Masheng Yang ◽  
Yaping Cheng ◽  

The Daya Bay Reactor Neutrino Experiment has measured a non-zero value of the neutrino mixing angle θ13 with a significance of 7.7 standard deviations by a rate-only analysis.1 The distortion of neutrino energy spectrum carries additional oscillation information and can improve the sensitivity of θ13 as well as measure neutrino mass splitting [Formula: see text]. A rate plus shape analysis is performed and the results have been published.2 Understanding detector energy non-linearity response is crucial for the rate plus shape analysis. In this contribution, we present a brief description of energy non-linearity studies at Daya Bay.


Sign in / Sign up

Export Citation Format

Share Document