scholarly journals Neutrino mass ordering and μ-τ reflection symmetry breaking

2017 ◽  
Vol 41 (12) ◽  
pp. 123103 ◽  
Author(s):  
Zhi-zhong Xing ◽  
Jing-yu Zhu
Universe ◽  
2018 ◽  
Vol 4 (12) ◽  
pp. 141 ◽  
Author(s):  
Guo-Yuan Huang ◽  
Zhi-Zhong Xing ◽  
Jing-Yu Zhu

The latest global analysis of neutrino oscillation data indicates that the normal neutrino mass ordering is favored over the inverted one at the 3 σ level. The best-fit values of the largest neutrino mixing angle θ 23 and the Dirac CP-violating phase δ are located in the higher octant and the third quadrant, respectively. We show that these experimental trends can be naturally explained by the μ - τ reflection symmetry breaking, triggered by the one-loop renormalization-group equations (RGEs) running from a superhigh energy scale down to the electroweak scale in the framework of the minimal supersymmetric standard model (MSSM). The complete parameter space is numerically explored for both the Majorana and Dirac cases, by allowing the smallest neutrino mass m 1 and the MSSM parameter tan β to vary within their reasonable ranges.


2003 ◽  
Vol 18 (22) ◽  
pp. 3935-3946 ◽  
Author(s):  
THOMAS APPELQUIST

In this talk I discuss the problem of accounting for light neutrino masses in theories with dynamical electroweak symmetry breaking. I will first describe this problem generally in a class of extended technicolor (ETC) models, describing the full set of Dirac and Majorana masses that arise in such theories. I will then present an explicit model exhibiting a combination of suppressed Dirac masses and a seesaw involving dynamically generated condensates of standard-model singlet, ETC-nonsinglet fermions. Because of the suppression of the Dirac neutrino mass terms, a seesaw yielding realistic neutrino masses does not require superheavy Majorana masses; indeed, the Majorana masses are typically much smaller than the largest ETC scale.


2013 ◽  
Vol 28 (24) ◽  
pp. 1350118 ◽  
Author(s):  
BISWAJIT ADHIKARY ◽  
AMBAR GHOSAL ◽  
PROBIR ROY

Within the type-I seesaw and in the basis where charged lepton and heavy neutrino mass matrices are real and diagonal, μτ symmetric four and three zero neutrino Yukawa textures are perturbed by lowest order μτ symmetry breaking terms. These perturbations are taken to be the most general ones for those textures. For quite small values of those symmetry breaking parameters, permitting a lowest order analysis, current best-fit ranges of neutrino mass squared differences and mixing angles are shown to be accommodable, including a value of θ13 in the observed range, provided all the light neutrinos have an inverted mass ordering.


2007 ◽  
Vol 16 (05) ◽  
pp. 1373-1381 ◽  
Author(s):  
TEPPEI BABA

The μ - τ symmetry can reproduce the consistent results with experimental data of θ13, and θ23 (θ13, and θ23 respectively denote the νe - ντ, and νμ - ντ, mixing angles). However, we can not address the issue of the leptonic CP violation in μ - τ symmetric models. So we add the μ - τ symmetry breaking part to include the CP violation. We characterize leptonic CP violation in terms of three phases, where one is conventional phase δ and others are additional phases ρ and γ. These δ, ρ and γ are, respectively, the phases of νe - ντ, νe - νμ and νμ - ντ mixings. The ρ and γ are redundant but the effect of ρ remains in the leptonic CP violation which is characterized by δ + ρ. The δ arises from the μ - τ symmetry breaking part of the Meμ and Meτ while ρ arises from of μ - τ symmetric part of the Meμ and Meτ, where Mij stands for ij (i,j = e,μ,τ) element of M(= [Formula: see text] for Mν being a flavor neutrino mass matrix). Moreover, θ23 can be exactly estimated to be: [Formula: see text] ( sin θ ∝ sin θ13 cos (δ + ρ)[Formula: see text], sin ϕ ∝ Mμμ - Mττ, where [Formula: see text] is the solar neutrino mass difference squared). The conditions of maximal atmospheric neutrino mixing are given by [Formula: see text] and Mμμ = Mττ,which indicate maximal Dirac CP violation.


2006 ◽  
Vol 128 (16) ◽  
pp. 5318-5319 ◽  
Author(s):  
David M. Walba ◽  
Eva Korblova ◽  
Cheng-Cher Huang ◽  
Renfan Shao ◽  
Michi Nakata ◽  
...  

2019 ◽  
Vol 79 (10) ◽  
Author(s):  
N. Anh Ky ◽  
N. T. Hong Van ◽  
D. Nguyen Dinh ◽  
P. Quang Van

Abstract A neutrino mass model is suggested within an $$SU(4)\otimes U(1)$$SU(4)⊗U(1)-electroweak theory. The smallness of neutrino masses can be guaranteed by a seesaw mechanism realized through Yukawa couplings to a scalar SU(4)-decuplet. In this scheme the light active neutrinos are accompanied by heavy neutrinos, which may have masses at different scales, including those within eV–MeV scales investigated quite intensively in both particle physics and astrophysics/cosmology. The flavour neutrinos are superpositions of light neutrinos and a small fraction of heavy neutrinos with the mixing to be determined by the model’s parameters (Yukawa coupling coefficients or symmetry breaking scales). The distribution shape of the Yukawa couplings can be visualized via a model-independent distribution of the neutrino mass matrix elements derived by using the current experimental data. The absolute values of these Yukawa couplings are able to be determined if the symmetry breaking scales are known, and vice versa. With reference to several current and near future experiments, detectable bounds of these heavy neutrinos at different mass scales are discussed and estimated.


Sign in / Sign up

Export Citation Format

Share Document