scholarly journals Middle Holocene Climate Oscillations Recorded in the Western Dvina Lakeland

Water ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1611
Author(s):  
Agnieszka Mroczkowska ◽  
Dominik Pawłowski ◽  
Emilie Gauthier ◽  
Andrey Mazurkevich ◽  
Tomi P. Luoto ◽  
...  

Although extensive archeological research works have been conducted in the Serteya region in recent years, the Holocene climate history in the Western Dvina Lakeland in Western Russia is still poorly understood. The Neolithic human occupation of the Serteyka lake–river system responded to climate oscillations, resulting in the development of a pile-dwelling settlement between 5.9 and 4.2 ka cal BP. In this paper, we present the quantitative paleoclimatic reconstructions of the Northgrippian stage (8.2–4.2 ka cal BP) from the Great Serteya Palaeolake Basin. The reconstructions were created based on a multiproxy (Chironomidae, pollen and Cladocera) approach. The mean July air temperature remained at 17–20 °C, which is similar to the present temperature in the Smolensk Upland. The summer temperature revealed only weak oscillations during 5.9 and 4.2 ka cal BP. A more remarkable feature during those events was an increase in continentality, manifested by a lower winter temperature and lower annual precipitation. During the third, intermediate oscillation in 5.0–4.7 ka cal BP, a rise in summer temperature and stronger shifts in continental air masses were recorded. It is still unclear if the above-described climate fluctuations are linked to the North Atlantic Oscillation and can be interpreted as an indication of Bond events because only a few high-resolution paleoclimatic reconstructions from the region have been presented and these reconstructions do not demonstrate explicit oscillations in the period of 5.9 and 4.2 ka cal BP.

2007 ◽  
Vol 46 ◽  
pp. 170-176 ◽  
Author(s):  
Oddur Sigurđsson ◽  
Trausti Jónsson ◽  
Tómas Jóhannesson

AbstractMeasurements of the retreat and advance of glacier termini are simple and straightforward and in many cases give clear indications about climate history. A careful analysis of glacier type and the processes that override the climate forcing of the mass balance are important for the correct interpretation of terminus variations in terms of climate fluctuations. Regular measurements of glacier variations in Iceland were started in 1930. The Iceland Glaciological Society is now responsible for the monitoring programme. The observed front variations of non-surge-type outlet glaciers of various sizes have closely mimicked major variations of the climate in Iceland during the 20th century. Most of the glaciers retreated rapidly during the warm decades from 1930 to 1960, slowing down as the climate cooled during the following decade, and started to advance after 1970. The rate of advance peaked in the 1980s, after which it slowed down as a consequence of rapid warming of the climate that has taken place since the mid-1980s. Mass-balance measurements show alternating positive and negative mass balance of glaciers during the period 1987–95, but the mass balance has been predominantly negative since 1996. Most glaciers in Iceland began to retreat after 1990, and by 2000 all monitored non-surge-type glaciers in Iceland were retreating. A comparison of the front variations of non-surge-type glaciers and mean summer temperature shows that the major shifts in the climate were followed by a change in the rate of advance or retreat at the termini with a delay of only a few years. This delay does not seem to correlate with the size, the mass turnover or other characteristics of the glacier.


2006 ◽  
Vol 19 (20) ◽  
pp. 5100-5121 ◽  
Author(s):  
J. W. Hurrell ◽  
M. Visbeck ◽  
A. Busalacchi ◽  
R. A. Clarke ◽  
T. L. Delworth ◽  
...  

Abstract Three interrelated climate phenomena are at the center of the Climate Variability and Predictability (CLIVAR) Atlantic research: tropical Atlantic variability (TAV), the North Atlantic Oscillation (NAO), and the Atlantic meridional overturning circulation (MOC). These phenomena produce a myriad of impacts on society and the environment on seasonal, interannual, and longer time scales through variability manifest as coherent fluctuations in ocean and land temperature, rainfall, and extreme events. Improved understanding of this variability is essential for assessing the likely range of future climate fluctuations and the extent to which they may be predictable, as well as understanding the potential impact of human-induced climate change. CLIVAR is addressing these issues through prioritized and integrated plans for short-term and sustained observations, basin-scale reanalysis, and modeling and theoretical investigations of the coupled Atlantic climate system and its links to remote regions. In this paper, a brief review of the state of understanding of Atlantic climate variability and achievements to date is provided. Considerable discussion is given to future challenges related to building and sustaining observing systems, developing synthesis strategies to support understanding and attribution of observed change, understanding sources of predictability, and developing prediction systems in order to meet the scientific objectives of the CLIVAR Atlantic program.


2021 ◽  
Vol 8 (2021) (1) ◽  
pp. 1-20
Author(s):  
Vânia VIANA ◽  
◽  
Marcondes COSTA ◽  
Darilena PORFÍRIO ◽  
Glayce VALENTE ◽  
...  

The municipality of Belém is installed on low ground under a rich and immense system of surface waters that converge for the most part directly into the Pará River system, Marajó Bay, northern fathom of the Amazon River and then the Atlantic Ocean. The Guamá river (estuary) and Guajará bay stand out, bathing its western, north and northeast portions, and numerous tidal channels, as well as several streams converge on the former, as well as several swamps and temporary wetlands. The main urban nucleus, the city of Belém, was installed and continues to do so, along the tidal and igarapé channels, modifying its courses, and polluting them brutally, either by solid waste or by domestic effluents of all kinds without any treatment, in addition to industrial contributions, becoming more serious as the city moves forward in horizontal and vertical buildings. The tides partially assist in this cleaning, by carrying a large part of these pollutants daily to the Guamá River, from this one to the Guajará Bay and then Marajó and Atlantic. Beautiful beaches in the north and northeast of the municipality (Outeiro, Mosqueiro, Farol, Ariramba, Carananduba, Paraíso and Baía do Sol) attract thousands of visitors, which further contribute to general pollution. Although several surveys have already been carried out to assess these impacts and its dilution, it was decided to try a new attack, emphasizing the Tucunduba stream and its drainage in the Guamá river, the Guajará bay on its margin of strong industrial-port impact and then the beaches of the Baía do Sol. Water and solid sediment in suspension (suspended) were collected in three different periods, considering the two tidal cycles, in eight seasons. Measurements of the main physical parameters were made in loco. Next, cations and anions in the waters analyzed, mineralogical identification and chemistry of the suspensates, in addition to micromorphological analyzes were carried out. The results show that the Guamá river and Guajará bay can be still classified as unpolluted natural waters, similar to the white waters of the Amazon region. Tucunduba and the waters of the Baía do Sol, mainly those restricted (swamps and manholes) are strongly altered by human occupation. Cations and anions, as well as microplankton from the suspension sediments, also allow identify the seasonal interference of oceanic interference during the dry season. The suspension materials of these rivers are dominated by quartz, kaolinite, partly muscovite / illite, demonstrating a strong relationship with the sediments of the margins, gullies and flood plains, and also of the Barreiras Formation, Neogene in age, the geological unit that serves as a substrate for the lands of Belém municipality. However, for a more informed assessment, a systematic and much more comprehensive study is recommended from the chemical, biological, mineralogical point of view and still under strong seasonal and tidal cycle controls, preferably for a continuous decade.


2015 ◽  
Vol 9 (4) ◽  
pp. 1401-1414 ◽  
Author(s):  
M. Trachsel ◽  
A. Nesje

Abstract. Mass balances of Scandinavian glaciers are mainly influenced by winter precipitation and summer temperature. We used simple statistical models to assess the relative importance of summer temperature and winter precipitation for annual balances of eight glaciers in Scandinavia. Winter precipitation was more important for maritime glaciers, whereas summer temperature was more important for annual balances of continental glaciers. Most importantly relative importances of summer temperature and winter precipitation were not stable in time. For instance, winter precipitation was more important than summer temperature for all glaciers in the 25-year period 1972–1996, whereas the relative importance of summer temperature was increasing towards the present. Between 1963 and 1996 the Atlantic Multidecadal Oscillation (AMO) index was consistently negative and the North Atlantic Oscillation (NAO) Index was consistently positive between 1987 and 1995, both being favourable for glacier growth. Winter precipitation was more important than summer temperature for annual balances when only considering subsets of years with high NAO-index and negative AMO-index, respectively, whereas the importance of summer temperature was increased analysing subsets of years with low NAO-index and positive AMO-index, respectively. Hence, the relative importance of precipitation and temperature for mass balances was probably influenced by the state of the AMO and the NAO, as these two indexes are associated with changes in summer temperature (AMO) and winter precipitation (NAO).


1989 ◽  
Vol 24 (4) ◽  
pp. 589-608 ◽  
Author(s):  
I.K. Tsanis ◽  
J. Biberhofer ◽  
C.R. Murthy ◽  
A. Sylvestre

Abstract Determination of the mass output through the St. Lawrence River outflow system is an important component in computing mass balance of chemical loadings to Lake Ontario. The total flow rate in the St. Lawrence River System at the Wolfe Island area was calculated from detailed time series current meter measurements from a network of current meters and Lagrangian drifter experiments. This flow is roughly distributed in the ratio of 55% to 45% in the South and North channel, respectively. Loading estimates of selected chemicals have been made by combining the above transport calculations with the ongoing chemical monitoring data at the St. Lawrence outflow. A vertical gradient in the concentration of some organic and inorganic chemicals was observed. The measured concentration for some of the chemicals was higher during the summer months and also is higher in the South Channel than in the North Channel of the St. Lawrence River. These loading estimates are useful not only for modelling the mass balance of chemicals in Lake Ontario but also for serving as input loadings to the St. Lawrence River system from Lake Ontario.


2021 ◽  
Author(s):  
Pedro Jiménez-Guerrero ◽  
Nuno Ratola

AbstractThe atmospheric concentration of persistent organic pollutants (and of polycyclic aromatic hydrocarbons, PAHs, in particular) is closely related to climate change and climatic fluctuations, which are likely to influence contaminant’s transport pathways and transfer processes. Predicting how climate variability alters PAHs concentrations in the atmosphere still poses an exceptional challenge. In this sense, the main objective of this contribution is to assess the relationship between the North Atlantic Oscillation (NAO) index and the mean concentration of benzo[a]pyrene (BaP, the most studied PAH congener) in a domain covering Europe, with an emphasis on the effect of regional-scale processes. A numerical simulation for a present climate period of 30 years was performed using a regional chemistry transport model with a 25 km spatial resolution (horizontal), higher than those commonly applied. The results show an important seasonal behaviour, with a remarkable spatial pattern of difference between the north and the south of the domain. In winter, higher BaP ground levels are found during the NAO+ phase for the Mediterranean basin, while the spatial pattern of this feature (higher BaP levels during NAO+ phases) moves northwards in summer. These results show deviations up to and sometimes over 100% in the BaP mean concentrations, but statistically significant signals (p<0.1) of lower changes (20–40% variations in the signal) are found for the north of the domain in winter and for the south in summer.


Water ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 866
Author(s):  
Gary Free ◽  
Mariano Bresciani ◽  
Monica Pinardi ◽  
Nicola Ghirardi ◽  
Giulia Luciani ◽  
...  

Climate change has increased the temperature and altered the mixing regime of high-value lakes in the subalpine region of Northern Italy. Remote sensing of chlorophyll-a can help provide a time series to allow an assessment of the ecological implications of this. Non-parametric multiplicative regression (NPMR) was used to visualize and understand the changes that have occurred between 2003–2018 in Lakes Garda, Como, Iseo, and Maggiore. In all four deep subalpine lakes, there has been a disruption from a traditional pattern of a significant spring chlorophyll-a peak followed by a clear water phase and summer/autumn peaks. This was replaced after 2010–2012, with lower spring peaks and a tendency for annual maxima to occur in summer. There was a tendency for this switch to be interspersed by a two-year period of low chlorophyll-a. Variables that were significant in NPMR included time, air temperature, total phosphorus, winter temperature, and winter values for the North Atlantic Oscillation. The change from spring to summer chlorophyll-a maxima, relatively sudden in an ecological context, could be interpreted as a regime shift. The cause was probably cascading effects from increased winter temperatures, reduced winter mixing, and altered nutrient dynamics. Future trends will depend on climate change and inter-decadal climate drivers.


Entropy ◽  
2021 ◽  
Vol 23 (8) ◽  
pp. 969
Author(s):  
Miguel C. Soriano ◽  
Luciano Zunino

Time-delayed interactions naturally appear in a multitude of real-world systems due to the finite propagation speed of physical quantities. Often, the time scales of the interactions are unknown to an external observer and need to be inferred from time series of observed data. We explore, in this work, the properties of several ordinal-based quantifiers for the identification of time-delays from time series. To that end, we generate artificial time series of stochastic and deterministic time-delay models. We find that the presence of a nonlinearity in the generating model has consequences for the distribution of ordinal patterns and, consequently, on the delay-identification qualities of the quantifiers. Here, we put forward a novel ordinal-based quantifier that is particularly sensitive to nonlinearities in the generating model and compare it with previously-defined quantifiers. We conclude from our analysis on artificially generated data that the proper identification of the presence of a time-delay and its precise value from time series benefits from the complementary use of ordinal-based quantifiers and the standard autocorrelation function. We further validate these tools with a practical example on real-world data originating from the North Atlantic Oscillation weather phenomenon.


The Holocene ◽  
2019 ◽  
Vol 30 (3) ◽  
pp. 479-484
Author(s):  
Daniel P Maxbauer ◽  
Mark D Shapley ◽  
Christoph E Geiss ◽  
Emi Ito

We present two hypotheses regarding the evolution of Holocene climate in the Northern Rocky Mountains that stem from a previously unpublished environmental magnetic record from Jones Lake, Montana. First, we link two distinct intervals of fining magnetic grain size (documented by an increasing ratio of anhysteretic to isothermal remanent magnetization) to the authigenic production of magnetic minerals in Jones Lake bottom waters. We propose that authigenesis in Jones Lake is limited by rates of groundwater recharge and ultimately regional hydroclimate. Second, at ~8.3 ka, magnetic grain size increases sharply, accompanied by a drop in concentration of magnetic minerals, suggesting a rapid termination of magnetic mineral authigenesis that is coeval with widespread effects of the 8.2 ka event in the North Atlantic. This association suggests a hydroclimatic response to the 8.2 ka event in the Northern Rockies that to our knowledge is not well documented. These preliminary hypotheses present compelling new ideas that we hope will both highlight the sensitivity of magnetic properties to record climate variability and attract more work by future research into aridity, hydrochemical response, and climate dynamics in the Northern Rockies.


Sign in / Sign up

Export Citation Format

Share Document