scholarly journals Flood Forecasting in Large River Basins Using FOSS Tool and HPC

Water ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 3484
Author(s):  
Upasana Dutta ◽  
Yogesh Kumar Singh ◽  
T. S. Murugesh Prabhu ◽  
Girishchandra Yendargaye ◽  
Rohini Gopinath Kale ◽  
...  

The Indian subcontinent is annually affected by floods that cause profound irreversible damage to crops and livelihoods. With increased incidences of floods and their related catastrophes, the design, development, and deployment of an Early Warning System for Flood Prediction (EWS-FP) for the river basins of India is needed, along with timely dissemination of flood-related information for mitigation of disaster impacts. Accurately drafted and disseminated early warnings/advisories may significantly reduce economic losses incurred due to floods. This study describes the design and development of an EWS-FP using advanced computational tools/methods, viz. HPC, remote sensing, GIS technologies, and open-source tools for the Mahanadi River Basin of India. The flood prediction is based on a robust 2D hydrodynamic model, which solves shallow water equations using the finite volume method. The model is open-source, supports geographic file formats, and is capable of simulating rainfall run-off, river routing, and tidal forcing, simultaneously. The model was tested for a part of the Mahanadi River Basin (Mahanadi Delta, 9225 sq km) with actual and predicted discharge, rainfall, and tide data. The simulated flood inundation spread and stage were compared with SAR data and CWC Observed Gauge data, respectively. The system shows good accuracy and better lead time suitable for flood forecasting in near-real-time.

2021 ◽  
Vol 13 (19) ◽  
pp. 3916
Author(s):  
Sikandar Ali ◽  
Muhammad Jehanzeb Masud Cheema ◽  
Muhammad Mohsin Waqas ◽  
Muhammad Waseem ◽  
Megersa Kebede Leta ◽  
...  

Rapid and reliable flood information is crucial for minimizing post-event catastrophes in the complex river basins of the world. The Chenab River basin is one of the complex river basins of the world, facing adverse hydrometeorological conditions with unpredictable hydrologic response. Resultantly, many vicinities along the river undergo destructive inundation, resulting in huge life and economic losses. In this study, Hydrologic Engineering Centre–Hydrologic Modeling System (HEC-HMS) and HEC–River Analysis System (HEC-RAS) models were used for flood forecasting and inundation modeling of the Chenab River basin. The HEC-HMS model was used for peak flow simulation of 2014 flood event using Global Precipitation Mission (GMP) Integrated Multisatellite Retrievals-Final (IMERG-F), Tropical Rainfall Measuring Mission_Real Time (TRMM_3B42RT), and Global Satellite Mapping of Precipitation_Near Real Time (GSMaP_NRT) precipitation products. The calibration and validation of the HEC-RAS model were carried out for flood events of 1992 and 2014, respectively. The comparison of observed and simulated flow at the outlet indicated that IMERG-F has good peak flow simulation results. The simulated inundation extent revealed an overall accuracy of more than 90% when compared with satellite imagery. The HEC-RAS model performed well at Manning’s n of 0.06 for the river and the floodplain. From the results, it can be concluded that remote sensing integrated with HEC-HMS and HEC-RAS models could be one of the workable solutions for flood forecasting, inundation modeling, and early warning. The concept of integrated flood management (IFM) has also been translated into practical implementation for joint Indo-Pak management for flood mitigation in the transboundary Chenab River basin.


2018 ◽  
Vol 13 (1) ◽  
pp. 32-43 ◽  
Author(s):  
Umesh Kumar Singh ◽  
Balwant Kumar

Anthropogenic greenhouse gas emission is altering the global hydrological cycle due to change in rainfall pattern and rising temperature which is responsible for alteration in the physical characteristics of river basin, melting of ice, drought, flood, extreme weather events and alteration in groundwater recharge. In India, water demand for domestic, industrial and agriculture purposes have already increased many folds which are also influencing the water resource system. In addition, climate change has induced the surface temperature of the Indian subcontinent by 0.48 ºC in just last century. However, Ganges–Brahmaputra–Meghna (GBM) river basins have great importance for their exceptional hydro-geological settings and deltaic floodplain wetland ecosystems which support 700 million people in Asia. The climatic variability like alterations in precipitation and temperature over GBM river basins has been observed which signifies the GBM as one of the most vulnerable areas in the world under the potential impact of climate change. Consequently, alteration in river discharge, higher runoff generation, low groundwater recharge and melting of glaciers over GBM river basin could be observed in near future. The consequence of these changes due to climate change over GBM basin may create serious water problem for Indian sub-continents. This paper reviews the literature on the historical climate variations and how climate change affects the hydrological characteristics of different river basins.


2020 ◽  
Vol 20 (7) ◽  
pp. 2826-2844
Author(s):  
Preeti Rajput ◽  
Manish Kumar Sinha

Abstract Development is said to be sustainable in respect of drought if the effect has been absorbed by the existing system. Occurrence of drought depends on physiographical, climatic factors and optimum utilization of available resources of the river basin. This study aims to evaluate the vulnerability and resilience of river basin systems for the identification of priority areas under drought susceptibility for three different river basins, namely Arpa, Kharun and Upper Seonath of Mahanadi river in central India, as a pilot area for this study. The study represents an approach to evaluate the drought susceptibility of river basins based on physiographical factors and anthropogenic activities. A model proposed for vulnerability assessment based on variables of exposure, sensitivity and adaptive capacity, and a geospatial database of basin characteristics contributing to vulnerability, was generated using remote sensing and a geographic information system. Multi-criteria decision analysis was done to evaluate the influence of river basin characteristics, population load and land-use/cover on drought susceptibility for assessing the drought vulnerability of the river basin and suggest the solution for the optimum utilization of natural resources according to the river basin characteristics. The result of this study demarcates the area in four categories of Extremely vulnerable, Moderately vulnerable, Vulnerable and Not vulnerable. On the analysis, only 3.86% of Upper Seonath is Not vulnerable, followed by Kharun basin having 15.59% as Not vulnerable area and 48.23% of the area of Arpa river basin identified as Not vulnerable. Arpa river basin is least affected by drought due to its lower population density and high coverage of forest and agriculture area.


2016 ◽  
Vol 17 (2) ◽  
pp. 615-636 ◽  
Author(s):  
Harsh L. Shah ◽  
Vimal Mishra

Abstract Real-time streamflow monitoring is essential over the Indian subcontinental river basins, as a large population is affected by floods. Moreover, streamflow monitoring helps in managing water resources in the agriculture-dominated region. In this study, the authors systematically investigated the bias and uncertainty in satellite-based precipitation products [Climate Prediction Center morphing technique (CMORPH); Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks (PERSIANN); PERSIANN Climate Data Record (PERSIANN-CDR); and Tropical Rainfall Measuring Mission (TRMM), version 7, real-time (3B42RTV7) and gauge-adjusted (3B42V7) products] over the Indian subcontinental river basins for the period of 2000–13. Moreover, the authors evaluated the influence of bias in the satellite precipitation on real-time streamflow monitoring and flood assessment over the Mahanadi river basin. Results showed that CMORPH and PERSIANN underestimated daily mean precipitation over the majority of the subcontinental river basins. On the other hand, TRMM-3B42RTV7 overestimated daily mean precipitation over most of the river basins in the subcontinent. While gauge-adjusted products of PERSIANN (PERSIANN-CDR) and TRMM (TRMM-3B42V7) performed better than their real-time products, large biases remain in their performance to capture extreme precipitation (both frequency and magnitudes) over the subcontinental basins. Among the real-time precipitation products, TRMM-3B42RTV7 performed better than CMORPH and PERSIANN over the majority of the Indian subcontinental basins. Daily streamflow simulations using the Variable Infiltration Capacity model (VIC) for the Mahanadi river basin showed a better performance by the TRMM-3B42RTV7 product than the other real-time datasets. Moreover, daily streamflow simulations over the Mahanadi river basin showed that bias in real-time precipitation products affects the initial condition and precipitation forcing, which in turn affects flood peak timing and magnitudes.


2012 ◽  
Vol 60 (3) ◽  
pp. 162-173 ◽  
Author(s):  
Petr Janál ◽  
Miloš Starý

Fuzzy Model Used for the Prediction of a State of Emergency for a River Basin in the Case of a Flash Flood - PART 2This article is a continuation of a previous one named Fuzzy model use for prediction of the state of emergency of river basin in the case of flash flood (Janál&Starý, 2009), where the potential applications of fuzzy logic in the field of flash flood forecasting were described. Flash flood forecasting needs a specific approach because of the character of torrential rainfall. Storms are very difficult to forecast in space and time. The hydrological models designed for flash flood prediction have to be able to work with very uncertain input data. Moreover, the models have to be capable of evaluating the level of danger in as short a time as possible because of the highly dynamic character of the modeled process. The fuzzy model described in the previous article was modified into a form usable in operational hydrology and a simulation of its operational application was run using this model. The selected time period for the simulation was the summer of 2009, when numerous flash floods occurred in Czech Republic. The topic of this article is the preparation of the model for practical use and the results of the simulation of its operation.


2014 ◽  
Vol 25 (1-2) ◽  
pp. 61-68 ◽  
Author(s):  
V. I. Monchenko ◽  
L. P. Gaponova ◽  
V. R. Alekseev

Crossbreeding experiments were used to estimate cryptic species in water bodies of Ukraine and Russia because the most useful criterion in species independence is reproductive isolation. The problem of cryptic species in the genus Eucyclops was examined using interpopulation crosses of populations collected from Baltic Sea basin (pond of Strelka river basin) and Black Sea basin (water-reservoires of Dnieper, Dniester and Danube rivers basins). The results of reciprocal crosses in Eucyclops serrulatus-group are shown that E. serrulatus from different populations but from water bodies belonging to the same river basin crossed each others successfully. The interpopulation crosses of E. serrulatus populations collected from different river basins (Dnipro, Danube and Dniester river basins) were sterile. In this group of experiments we assigned evidence of sterility to four categories: 1) incomplete copulation or absence of copulation; 2) nonviable eggs; 3) absence of egg membranes or egg sacs 4) empty egg membranes. These crossbreeding studies suggest the presence of cryptic species in the E. serrulatus inhabiting ecologically different populations in many parts of its range. The same crossbreeding experiments were carries out between Eucyclops serrulatus and morphological similar species – Eucyclops macruroides from Baltic and Black Sea basins. The reciprocal crossings between these two species were sterile. Thus taxonomic heterogeneity among species of genus Eucyclops lower in E. macruroides than in E. serrulatus. The interpopulation crosses of E. macruroides populations collected from distant part of range were fertile. These crossbreeding studies suggest that E. macruroides species complex was evaluated as more stable than E. serrulatus species complex.


Sign in / Sign up

Export Citation Format

Share Document