An innovative X-shaped vibration isolation mount with tunable quasi-zero-stiffness property

2021 ◽  
Vol 263 (3) ◽  
pp. 3011-3022
Author(s):  
Jing Bian ◽  
Xingjian Jing ◽  
Yishen Tian

Passive vibration isolation is always preferable in many engineering practices. To this aim, an innovative, compact, and passive vibration isolation mount is studied in this paper. The novel mount is adjustable to different payloads due to a special oblique and tunable stiffness mechanism, and of high vibration isolation performance with a wider quasi-zero-stiffness range due to the deliberate employment of negative stiffness of the X-shaped structure. The X-shaped structure has been well studied recently due to its excellent nonlinear stiffness and damping properties. In this study, by using of the negative stiffness property within the X-shaped structure, the X-shaped mount (X-mount) can have an obviously larger vibration displacement range which maintains the quasi-zero-stiffness property. A special oblique spring is thus introduced such that the overall equivalent stiffness can be much easily adjusted. Systematic parametric study is conducted to reveal the critical design parameters and their relationship with vibration isolation performance. A prototype and experimental validations are implemented to validate the theoretical results. It is believed that the X-mount would provide an innovative technical upgrade to many existing vibration isolation mounts in various engineering practices and it could also be the first prototyped mount which can offer adjustable quasi-zero stiffness conveniently.

2017 ◽  
Vol 2017 ◽  
pp. 1-16 ◽  
Author(s):  
Seong-Cheol Kwon ◽  
Mun-Shin Jo ◽  
Hyun-Ung Oh

On-board appendages with mechanical moving parts for satellites produce undesirable micro-jitters during their on-orbit operation. These micro-jitters may seriously affect the image quality from high-resolution observation satellites. A new application form of a passive vibration isolation system was proposed and investigated using a pseudoelastic SMA mesh washer. This system guarantees vibration isolation performance in a launch environment while effectively isolating the micro-disturbances from the on-orbit operation of jitter source. The main feature of the isolator proposed in this study is the use of a ring-type mesh washer as the main axis to support the micro-jitter source. This feature contrasts with conventional applications of the mesh washers where vibration damping is effective only in the thickness direction of the mesh washer. In this study, the basic characteristics of the SMA mesh washer isolator in each axis were measured in static tests. The effectiveness of the design for the new application form of the SMA mesh washer proposed in this study was demonstrated through both launch environment vibration test at qualification level and micro-jitter measurement test which corresponds to on-orbit condition.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Hao Cao ◽  
Yaopeng Chang ◽  
Jiaxi Zhou ◽  
Xuhui Zhao ◽  
Ling Lu ◽  
...  

The vibrations generated by a three-phase power transformer reduce the comfort of residents and the service life of surrounding equipment. To resolve this tough issue, a quasi-zero-stiffness (QZS) isolator for the transformer is proposed. This paper is devoted to developing a QZS isolator in a simple way for engineering practices. The vertical springs are used to support the heavy weight of the transformer, while the oblique springs are employed to fulfill negative stiffness to neutralize the positive stiffness of the vertical spring. Hence, a combination of the vertical and oblique spring can yield high static but low dynamic stiffness, and the vibration isolation efficiency can be improved substantially. The dynamic analysis for the QZS vibration isolation system is conducted by the harmonic balance method, and the vibration isolation performance is estimated. Finally, the prototype of the QZS isolator is manufactured, and then the vibration isolation performance is tested comparing with the linear isolator under real power loading conditions. The experimental results show that the QZS isolator prominently outperforms the existing linear isolator. This is the first time to devise a QZS isolator for three-phase power transformers with heavy payloads in engineering practices.


Author(s):  
Shengyang Zhu ◽  
Jizhong Yang ◽  
Chengbiao Cai ◽  
Zili Pan ◽  
Wanming Zhai

This paper aims to develop a low-frequency vibration isolation track based on passive vibration isolation theory and vehicle–track interaction analysis. First, a preliminary low-frequency vibration isolation track is proposed by attaching multiple dynamic vibration absorbers to a discontinuous floating slab track, and the optimal design parameters of the multidynamic vibration absorber are determined by searching the minimum values of two assessment functions. Further, a three-dimensional coupled dynamic model of a metro vehicle and the low-frequency vibration isolation track is established by using Ansys Parametric Design Language, where the equations of motion of the vehicle subsystem and the wheel–rail contact calculations are incorporated in the software Ansys using the Ansys Parametric Design Language, and the low-frequency vibration isolation track subsystem is directly created by using common elements in Ansys. The vibration isolation performance of the preliminary low-frequency vibration isolation track with multidynamic vibration absorber is investigated under harmonic load and vehicle dynamic load, respectively. Results show that the slab acceleration and supporting force are significantly reduced at low frequencies of 10–20 Hz compared with those of the traditional floating slab tracks. Finally, an improved low-frequency vibration isolation track is developed for actual manufacturing and practical application, and simulations show that the improved low-frequency vibration isolation track exhibits a more robust vibration isolation performance even if optimal design parameters have variations due to manufacturing errors or material deterioration.


2021 ◽  
Vol 11 (15) ◽  
pp. 6928
Author(s):  
Xin Liao ◽  
Ning Zhang ◽  
Xiaofei Du ◽  
Wanjie Zhang

In this study, to improve the vibration isolation performance of a cab seat and the ride comfort of the driver, we propose a mathematical model for a seat suspension system of a construction machinery cab based on a negative stiffness structure (NSS). First, a static analysis of a seat suspension system is conducted and the different parameters and their influences on the dynamic stiffness are discussed. Thereby, the ideal configuration parameter range of the suspension system is obtained. Moreover, the nonlinear dynamic model of the designed seat suspension system is established. The frequency response and the stability are analyzed by using the HBM method and numerical simulation. The vibration transmissibility characteristics and vibration suppression effects of the seat suspension system are presented in detail. The results show that, as compared with a quasi-zero-stiffness system, the QZS-IE system has higher vibration suppression advantages under large excitation and small damping, as well as lower transmissibility and a wider vibration isolation frequency range. In addition, an inerter element with a larger mass ratio and relatively shorter distance ratio is better for vibration isolation performance of the QZS-IE system in a practical engineering application. The results of this study provide a scientific basis for the design and improvement of a seat suspension system.


Author(s):  
Hui Liu ◽  
Xiaojie Wang ◽  
Weida Wang ◽  
Changle Xiang

This paper proposes a torsion isolator with negative stiffness structures, which has low stiffness. The torsion isolator has been designed into disk structure, which is the installation position of the positive springs and negative stiffness structures. In this paper, the model of the torsion isolator is introduced firstly, and the nonlinear stiffness and torque are studied under different compression deformation of springs in negative stiffness structures. Then a two-degree-freedom equation of the torsional isolator is established and vibration transmissibility is obtained by using Harmonic Balance Method. Theoretical analysis results show that the isolator with negative stiffness structures has larger isolation frequency range than linear isolator. Finally, an initial experiment is completed. The experimental results show that the isolator has a good vibration isolation performance.


2020 ◽  
Vol 10 (10) ◽  
pp. 3573 ◽  
Author(s):  
Mengnan Sun ◽  
Zhixu Dong ◽  
Guiqiu Song ◽  
Xingwei Sun ◽  
Weijun Liu

The vibration isolator equipped with a negative stiffness corrector (NSC) excels at vibration isolation, but its stiffness often presents complex nonlinearity which needs to be approximated in calculation. To avoid the harmful effects of approximate stiffness, the NSC formed by the cam-roller mechanism with a quadratic polynomial trajectory (QCRM) is proposed to construct the vibration isolation system. From the inherent geometrical relationship in the structure, the generation mechanism of high-static-low-dynamic stiffness is analyzed, and the quasi-zero stiffness (QZS) condition of the system is derived. Based on the dynamic model of the QZS vibration isolator, the functions of response characteristics are solved by the harmonic balance method. Then, the absolute displacement transmissibility with different parameter values, and the vibration isolation performance under sinusoidal, multi-frequency wave, and random excitations are discussed. The simulated results show that the stiffness expression of the proposed QZS vibration isolator is directly a quadratic function, which removes the calculation error caused by approximate stiffness at large displacement and broadens the available isolation displacement range. Introducing the QCRM-NSC can significantly suppress the low-frequency vibration and resonance response without changing the load-bearing capacity of the vibration isolator. Under various excitations, the vibration isolation performance of the QZS vibration isolator all outperforms the linear counterpart.


Sign in / Sign up

Export Citation Format

Share Document