THE EFFECT OF STABILIZING ADDITIVES ON THE STABILITY OF ASPHALT CONCRETE TO THE EFFECTS OF WEATHER AND CLIMATIC FACTORS
The article presents the results of studies on the influence of stabilizing additives from industrial waste on the change in the physical and mechanical properties of asphalt concrete as a result of the influence of weather and climatic factors. Microporous waste from the pulp and paper industry of high density (corrugated cardboard), mineral fillers from limestone and waste from wet magnetic separation of ferruginous quartzites in a stable and activated state and a bituminous emulsion are used as initial components. As a criterion for assessing the influence of weather and climatic factors on the physical and mechanical properties of the stone mastic asphalt, the coefficient of degradation of their values was used. It is found that after one and three years of conditional exposure to weather and climatic factors, there was an increase in the tensile strength at splitting and a decrease in the compressive strength at temperatures of 20 and 50 °C of samples of all compositions of the stone mastic asphalt, which is associated with the aging of the binder and the separation of the bitumen film from the surface of mineral materials and components of the stabilizing additive. It is shown that as a result of the introduction of mineral fillers into the composition of stabilizing additives, their bitumen-retaining ability increases, which indicates an increase in the structuring effect of the stabilizer and helps to slow down aging. The most effective was shown by a stabilizing additive containing freshly ground wet magnetic separation waste, which is explained by their high adsorption capacity in relation to an organic binder. It is found that the stone mastic asphalt using the developed stabilizing additive undergoes significantly less degradation as a result of the influence of weather and climatic factors than asphalt concrete on a traditional Viatop stabilizer.