scholarly journals PLANNING OF APPLICATION OF THE SYSTEM OF DEVICES ON A SET OF OBJECTS FOR THE SCHEME OF ELEMENTARY OPERATION "ONE OBJECT - K DEVICES"

Author(s):  
Ruslan Ananko ◽  
Tetiana Labutkina

Centralized methods of planning the use of N devices for the realization of operations on a set of M objects with the scheme of the elementary operation is "one object  k devices" are proposed. Methods include modifications for the following cases: 1) only the described scheme of elementary operation is applied ("rigid" requirement); 2) the named scheme is preferred, but there are possible options of reducing the specified (desired) maximum number k for individual operations ("soft" requirement). Methods suitable for multi-elements dynamic systems in real time of their operation. Under planning conditions, the device system and the set of objects are multi-element. Planning methods belong to the category of "fast" methods, which suitable for dynamic multi-element systems in real time of their operation. The verification of the methods is implemented for the generalized system and for the particular case of the satellite system of observation of orbital objects.

1994 ◽  
Vol 3 (3) ◽  
pp. 103 ◽  
Author(s):  
R. Milne ◽  
C. Nicol ◽  
M. Ghallab ◽  
L. Travé-Massuyès ◽  
K. Bousson ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2810
Author(s):  
Krzysztof Naus ◽  
Piotr Szymak ◽  
Paweł Piskur ◽  
Maciej Niedziela ◽  
Aleksander Nowak

Undoubtedly, Low-Altitude Unmanned Aerial Vehicles (UAVs) are becoming more common in marine applications. Equipped with a Global Navigation Satellite System (GNSS) Real-Time Kinematic (RTK) receiver for highly accurate positioning, they perform camera and Light Detection and Ranging (LiDAR) measurements. Unfortunately, these measurements may still be subject to large errors-mainly due to the inaccuracy of measurement of the optical axis of the camera or LiDAR sensor. Usually, UAVs use a small and light Inertial Navigation System (INS) with an angle measurement error of up to 0.5∘ (RMSE). The methodology for spatial orientation angle correction presented in the article allows the reduction of this error even to the level of 0.01∘ (RMSE). It can be successfully used in coastal and port waters. To determine the corrections, only the Electronic Navigational Chart (ENC) and an image of the coastline are needed.


2021 ◽  
Vol 3 (2) ◽  
pp. 363-382
Author(s):  
Md. Kamrul Hasan ◽  
Takashi S. T. Tanaka ◽  
Md. Rostom Ali ◽  
Chayan Kumer Saha ◽  
Md. Monjurul Alam

To reduce human drudgery and the risk of labor shortages in the Asian developing countries, the appropriate introduction of agricultural machinery, especially combine harvesters, is an urgent task. Custom hiring services (CHSs) are expected to contribute to making paddy harvesters prevalent in developing countries; however, the economic performance has been rarely quantified. The study was carried out to precisely evaluate the machine performance attributes of medium and large combine harvesters using the real-time kinematic (RTK) global navigation satellite system (GNSS) and to estimate the economic performance of CHSs of paddy harvesters in Japan, as a typical case of Asian countries. The financial profitability was evaluated by four major indicators: net present value, benefit–cost ratio, internal rate of return, and payback period. The financial indicators showed that both types of harvester could be considered financially viable. Thus, the investment in combine harvesters can be highly profitable for CHS business by a local service provider and custom-hire entrepreneur, providing a great opportunity to use a combine harvester without initial investment by general farmers. The findings demonstrated the high feasibility of CHSs of paddy harvesters in Japan, while they highlighted that further study is needed to estimate the feasibility of CHS in the other Asian developing countries.


2021 ◽  
Vol 13 (4) ◽  
pp. 823
Author(s):  
Lin Zhao ◽  
Jiachang Jiang ◽  
Liang Li ◽  
Chun Jia ◽  
Jianhua Cheng

Since the traditional real-time kinematic positioning method is limited by the reduced satellite visibility from the deprived navigational environments, we, therefore, propose an improved RTK method with multiple rover receivers sharing a common clock. The proposed method can enhance observational redundancy by blending the observations from each rover receiver together so that the model strength will be improved. Integer ambiguity resolution of the proposed method is challenged in the presence of several inter-receiver biases (IRB). The IRB including inter-receiver code bias (IRCB) and inter-receiver phase bias (IRPB) is calibrated by the pre-estimation method because of their temporal stability. Multiple BeiDou Navigation Satellite System (BDS) dual-frequency datasets are collected to test the proposed method. The experimental results have shown that the IRCB and IRPB under the common clock mode are sufficiently stable for the ambiguity resolution. Compared with the traditional method, the ambiguity resolution success rate and positioning accuracy of the proposed method can be improved by 19.5% and 46.4% in the restricted satellite visibility environments.


2014 ◽  
Vol 67 (3) ◽  
pp. 523-537 ◽  
Author(s):  
Aigong Xu ◽  
Zongqiu Xu ◽  
Xinchao Xu ◽  
Huizhong Zhu ◽  
Xin Sui ◽  
...  

On 27 December 2012 it was announced officially that the Chinese Navigation Satellite System BeiDou (BDS) was able to provide operational services over the Asia-Pacific region. The quality of BDS observations was confirmed as comparable with those of GPS, and relative positioning in static and kinematic modes were also demonstrated to be very promising. As Precise Point Positioning (PPP) technology is widely recognized as a method of precise positioning service, especially in real-time, in this contribution we concentrate on the PPP performance using BDS data only. BDS PPP in static, kinematic and simulated real-time kinematic mode is carried out for a regional network with six stations equipped with GPS- and BDS-capable receivers, using precise satellite orbits and clocks estimated from a global BDS tracking network. To validate the derived positions and trajectories, they are compared to the daily PPP solution using GPS data. The assessment confirms that the performance of BDS PPP is very comparable with GPS in terms of both convergence time and accuracy.


2021 ◽  
Vol 14 (2) ◽  
pp. 105
Author(s):  
Maelckson Bruno Barros Gomes ◽  
André Luis Silva Santos

<p class="04CorpodoTexto">Este artigo tem por objetivo aplicar geotecnologias para obtenção de informações planialtimétricas a fim de avaliar a viabilidade de implantação do campus Centro Histórico/Itaqui-Bacanga do IFMA. Considerando que para realização de levantamento por métodos tradicionais é recomendado que seja realizado o destocamento e a limpeza do terreno previamente, avaliou-se a realização do levantamento planialtimétrico a partir de um par de receptores <em>Global Navigation Satellite System</em> (GNSS) pelo método <em>Real Time Kinematic</em> (RTK) pós processado e também a partir da realização de levantamento fotogramétrico, utilizando aeronave remotamente pilotada (ARP), popularmente conhecida como drone. Esta análise permitiu demonstrar que o aerolevantamento com a ARP pode ser aplicado na concepção inicial de um projeto de engenharia, conforme classificação do Tribunal de Contas da União (TCU) para níveis de precisão, pois obteve-se uma diferença orçamentária de 19% entre os projetos elaborados a partir das duas geotecnologias.</p><div> </div>


2016 ◽  
Vol 12 (03) ◽  
pp. 64
Author(s):  
Haifeng Hu

Abstract—An online automatic disaster monitoring system can reduce or prevent geological mine disasters to protect life and property. Global Navigation Satellite System receivers and the GeoRobot are two kinds of in-situ geosensors widely used for monitoring ground movements near mines. A combined monitoring solution is presented that integrates the advantages of both. In addition, a geosensor network system to be used for geological mine disaster monitoring is described. A complete online automatic mine disaster monitoring system including data transmission, data management, and complex data analysis is outlined. This paper proposes a novel overall architecture for mine disaster monitoring. This architecture can seamlessly integrate sensors for long-term, remote, and near real-time monitoring. In the architecture, three layers are used to collect, manage and process observation data. To demonstrate the applicability of the method, a system encompassing this architecture has been deployed to monitor the safety and stability of a slope at an open-pit mine in Inner Mongolia.


2021 ◽  
Author(s):  
Dengqing Tang ◽  
Lincheng Shen ◽  
Xiaojiao Xiang ◽  
Han Zhou ◽  
Tianjiang Hu

<p>We propose a learning-type anchors-driven real-time pose estimation method for the autolanding fixed-wing unmanned aerial vehicle (UAV). The proposed method enables online tracking of both position and attitude by the ground stereo vision system in the Global Navigation Satellite System denied environments. A pipeline of convolutional neural network (CNN)-based UAV anchors detection and anchors-driven UAV pose estimation are employed. To realize robust and accurate anchors detection, we design and implement a Block-CNN architecture to reduce the impact of the outliers. With the basis of the anchors, monocular and stereo vision-based filters are established to update the UAV position and attitude. To expand the training dataset without extra outdoor experiments, we develop a parallel system containing the outdoor and simulated systems with the same configuration. Simulated and outdoor experiments are performed to demonstrate the remarkable pose estimation accuracy improvement compared with the conventional Perspective-N-Points solution. In addition, the experiments also validate the feasibility of the proposed architecture and algorithm in terms of the accuracy and real-time capability requirements for fixed-wing autolanding UAVs.</p>


Sign in / Sign up

Export Citation Format

Share Document