Herpetic Meningoencephalitis by Vertical Transmission: A Case Report and Systematic Review

2021 ◽  
Vol 2 (1) ◽  
pp. 35-41
Author(s):  
Julia Teles Triglia Pinto ◽  
◽  
Ana Carolina Tomasella Auad ◽  
Gabrielle Menegucci ◽  
Marília Gabriela Palácio Galbiatti ◽  
...  

Objective: To report a case of vertical herpetic meningoencephalitis. Results: The involvement of the central nervous system (CNS) in infection by HSV (herpes simplex virus), HSV-1 or HSV-2, causes an acute inflammatory process in the brain parenchyma, leading to herpetic encephalitis. It is a feared form of the disease due to its severity and its high rate of morbidity and mortality. Its rapid fatal progression can be prevented from early suspicion and treatment, which is essential when taking into account their neurological sequelae since survivors have motor sequelae, behavioral disorders, or epilepsy. The present work reports the case of a newborn male with spontaneous vaginal delivery who, at 19 days of age, started to experience fever, irritability, difficulty in eating, spasms, tremors of the upper limbs, deviation of the eyes, and seizures of difficult to control, together with CFE and serological changes, in addition to imaging tests compatible with herpetic meningoencephalitis, progressing with a very serious evolution despite the institution of specific treatment for CNS herpetic infection, evolving with important neurological sequelae. Conclusion: The sequels resulting from herpetic encephalitis not properly diagnosed, or even late, leads from severe neurological damage to death. Therefore, it is extremely important to start empirical treatment with antiviral drugs to reduce the sequelae mentioned above.

Viruses ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1468
Author(s):  
Yashika S. Kamte ◽  
Manisha N. Chandwani ◽  
Alexa C. Michaels ◽  
Lauren A. O’Donnell

Viruses that infect the central nervous system (CNS) are associated with developmental abnormalities as well as neuropsychiatric and degenerative conditions. Many of these viruses such as Zika virus (ZIKV), cytomegalovirus (CMV), and herpes simplex virus (HSV) demonstrate tropism for neural stem cells (NSCs). NSCs are the multipotent progenitor cells of the brain that have the ability to form neurons, astrocytes, and oligodendrocytes. Viral infections often alter the function of NSCs, with profound impacts on the growth and repair of the brain. There are a wide spectrum of effects on NSCs, which differ by the type of virus, the model system, the cell types studied, and the age of the host. Thus, it is a challenge to predict and define the consequences of interactions between viruses and NSCs. The purpose of this review is to dissect the mechanisms by which viruses can affect survival, proliferation, and differentiation of NSCs. This review also sheds light on the contribution of key antiviral cytokines in the impairment of NSC activity during a viral infection, revealing a complex interplay between NSCs, viruses, and the immune system.


2019 ◽  
Vol 20 (10) ◽  
pp. 2435 ◽  
Author(s):  
Tetsuya Takahashi ◽  
Takayoshi Shimohata

Methylmercury (MeHg) causes severe damage to the central nervous system, and there is increasing evidence of the association between MeHg exposure and vascular dysfunction, hemorrhage, and edema in the brain, but not in other organs of patients with acute MeHg intoxication. These observations suggest that MeHg possibly causes blood–brain barrier (BBB) damage. MeHg penetrates the BBB into the brain parenchyma via active transport systems, mainly the l-type amino acid transporter 1, on endothelial cell membranes. Recently, exposure to mercury has significantly increased. Numerous reports suggest that long-term low-level MeHg exposure can impair endothelial function and increase the risks of cardiovascular disease. The most widely reported mechanism of MeHg toxicity is oxidative stress and related pathways, such as neuroinflammation. BBB dysfunction has been suggested by both in vitro and in vivo models of MeHg intoxication. Therapy targeted at both maintaining the BBB and suppressing oxidative stress may represent a promising therapeutic strategy for MeHg intoxication. This paper reviews studies on the relationship between MeHg exposure and vascular dysfunction, with a special emphasis on the BBB.


2010 ◽  
Vol 134 (4) ◽  
pp. 625-629
Author(s):  
Sarah L. Ondrejka ◽  
Gary W. Procop ◽  
Keith K. Lai ◽  
Richard A. Prayson

Abstract Infection with the saprophagous nematode Halicephalobus species is uncommon but has been reported in horses worldwide. Only 3 human cases have been previously described, all of which have been fatal. We report a fourth fatal case, which occurred in a 39-year-old woman who presented with meningeal signs, altered mental status, and a prodromal pruritic rash. Diagnostic evaluation included an open brain biopsy, which was diagnosed as granulomatous vasculitis. The patient subsequently died after a course of steroids and cyclophosphamide. At autopsy, a robust perivascular mixed inflammatory infiltration of the brain parenchyma, meninges, and ventricular system was present with larval forms and mature nematodes morphologically consistent with Halicephalobus deletrix. Although extremely rare, this organism needs to be considered in the differential diagnosis of human helminthic infection of the central nervous system.


2018 ◽  
Vol 216 (1) ◽  
pp. 60-70 ◽  
Author(s):  
Geoffrey T. Norris ◽  
Jonathan Kipnis

Recent advances have directed our knowledge of the immune system from a narrative of “self” versus “nonself” to one in which immune function is critical for homeostasis of organs throughout the body. This is also the case with respect to the central nervous system (CNS). CNS immunity exists in a segregated state, with a marked partition occurring between the brain parenchyma and meningeal spaces. While the brain parenchyma is patrolled by perivascular macrophages and microglia, the meningeal spaces are supplied with a diverse immune repertoire. In this review, we posit that such partition allows for neuro–immune crosstalk to be properly tuned. Convention may imply that meningeal immunity is an ominous threat to brain function; however, recent studies have shown that its presence may instead be a steady hand directing the CNS to optimal performance.


1973 ◽  
Vol 138 (3) ◽  
pp. 740-744 ◽  
Author(s):  
F. B. Knotts ◽  
M. L. Cook ◽  
J. G. Stevens

Herpes simplex virus (HSV) type 1 induces a long-standing latent infection in the central nervous system of mice and rabbits. The infection was extablished in the brain stems of rabbits after corneal inoculation of the virus, and in the spinal cords of mice after rear footpad infection. In these animals, infectious virus could not be recovered by direct isolation from tissues; it was detected only after the tissues were maintained as organ cultures in vitro.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Oscar Kurt Bitzer-Quintero ◽  
Ignacio González-Burgos

The central nervous system is closely linked to the immune system at several levels. The brain parenchyma is separated from the periphery by the blood brain barrier, which under normal conditions prevents the entry of mediators such as activated leukocytes, antibodies, complement factors, and cytokines. The myeloid cell lineage plays a crucial role in the development of immune responses at the central level, and it comprises two main subtypes: (1) resident microglia, distributed throughout the brain parenchyma; (2) perivascular macrophages located in the brain capillaries of the basal lamina and the choroid plexus. In addition, astrocytes, oligodendrocytes, endothelial cells, and, to a lesser extent, neurons are implicated in the immune response in the central nervous system. By modulating synaptogenesis, microglia are most specifically involved in restoring neuronal connectivity following injury. These cells release immune mediators, such as cytokines, that modulate synaptic transmission and that alter the morphology of dendritic spines during the inflammatory process following injury. Thus, the expression and release of immune mediators in the brain parenchyma are closely linked to plastic morphophysiological changes in neuronal dendritic spines. Based on these observations, it has been proposed that these immune mediators are also implicated in learning and memory processes.


2021 ◽  
Author(s):  
Annick Melanie MAGNEROU ◽  
Martine NIDA ◽  
Daniel MASSI GAMS ◽  
Hugues Martial ZANGA ◽  
Fidelie Scolastique NGOUNGOURE HALIMA ◽  
...  

Abstract One of the possible causes of persistent inflammation of the brain parenchyma in the age of antiretrovirals is residual HIV replication, despite effective viral suppression in the bloodstream with Antiretroviral treatment (ART). The central nervous system (CNS) is infected early during primary HIV infection and is one of the reservoirs of this virus during chronic infection. Inadequate penetration of certain ART into the CNS could promote some degree of intrathecal HIV replication.We describe the case of an HIV-infected patient compliant to ART with an undetectable viral load in the blood but present in the cerebrospinal fluid (CSF). The patient presented with subacute rhombencephalitis due to HIV which was fatal to him.An HIV-infected and treated patient, well controlled on ART, with new neurological disorders, should be promptly investigated by brain MRI and CSF analysis for exhaustive detection of viruses including that of HIV itself.


2018 ◽  
Vol 26 (1) ◽  
pp. 82-85
Author(s):  
Ahmet Gökyar ◽  
Cengiz Cokluk

Background. Detection of a deep-seated lesion located in the brain parenchyma and major neuroanatomical sites is a critical issue in neurosurgery. Some neurosurgical cranial navigation systems have been developed that are available; however, some preparation is necessary, including the installation of complex computer software programs and obtaining specific neuroradiological images. Objective. The purpose of this experimental study was to design and evaluate a superficial stereotaxic frameless lesion locator in order to localize mass lesions within the brain. Methods. A superficial stereotaxic frameless lesion locator system was designed using cardboard and the Cartesian coordinate system as a reference framework. This material was used in a model creating printed magnetic resonance images in the superficially marking of the lesion. This material easily located the lesion placement and superficially projected the lesion location. Results. The results of this study revealed that the superficial stereotaxic frameless lesion location procedure using a coordinate cardboard locator is a safe, fast, and simple procedure. This procedure provides an accurate means of locating the target lesion seated within the brain parenchyma. When compared with other models, we found that this device is reliable and has a high rate of superficial lesion detection. Conclusion. A superficial lesion locator may be used in clinical practice. This experimental study demonstrated the usability and reliability of the procedure. Additional detailed investigations are necessary to improve the procedure.


2021 ◽  
Vol 33 ◽  
pp. 1-7
Author(s):  
Luis E. Fidalgo ◽  
Ana M. López-Beceiro ◽  
Carlos Martínez-Carrasco ◽  
Noelia Caparrós-Fontarosa ◽  
Antonio Sánchez ◽  
...  

In this study we describe the finding of a Cephenemyia stimulator larva in the brain of a roe deer (Capreolus capreolus) after performing a computed tomography (CT) scan of its head. Despite this anatomical location of oestrid larvae could be relatively frequent in other genera, such as Oestrus, to our knowledge, this is the first reported case involving the genus Cephenemyia. Concretely, a second-instar C. stimulator larvae was found in the basis of the cranium. The location of a macroscopic hemorrhagic lesion involving the brain parenchyma peripheral to the location of the larva suggests that tissue colonization occurred before the animal was hunted. Since no detectable alterations or damage to the cranial bones were observed, we suggest a possible larval migration route drilling the skull bones. Finally, we propose the use of the term “neuromyiasis” to be referred to the invasion of the central nervous system by dipteran larvae, particularly oestrids.


2020 ◽  
Vol 11 ◽  
Author(s):  
Alanna G. Spiteri ◽  
Claire L. Wishart ◽  
Nicholas J. C. King

Inflammation of the brain parenchyma is characteristic of neurodegenerative, autoimmune, and neuroinflammatory diseases. During this process, microglia, which populate the embryonic brain and become a permanent sentinel myeloid population, are inexorably joined by peripherally derived monocytes, recruited by the central nervous system. These cells can quickly adopt a morphology and immunophenotype similar to microglia. Both microglia and monocytes have been implicated in inducing, enhancing, and/or maintaining immune-mediated pathology and thus disease progression in a number of neuropathologies. For many years, experimental and analytical systems have failed to differentiate resident microglia from peripherally derived myeloid cells accurately. This has impeded our understanding of their precise functions in, and contributions to, these diseases, and hampered the development of novel treatments that could target specific cell subsets. Over the past decade, microglia have been investigated more intensively in the context of neuroimmunological research, fostering the development of more precise experimental systems. In light of our rapidly growing understanding of these cells, we discuss the differential origins of microglia and peripherally derived myeloid cells in the inflamed brain, with an analysis of the problems resolving these cell types phenotypically and morphologically, and highlight recent developments enabling more precise identification.


Sign in / Sign up

Export Citation Format

Share Document