scholarly journals Brain Tumor Image Segmentation Using Kernel Based Fuzzy C Means Clustering (KFCM) Algorithm

The kernel based fuzzy c means clustering is proposed in this article for segmentation of MR brain image. To alleviate the problem of drawback of computation cost of segmentation in the Fuzzy C Means is overcome by this kernel based FCM algorithm. The FCM algorithm provides good accuracy in the absence of noise; but in the presence of noise it doesn’t give good accuracy. In Kernal Based Fuzzy C Means, First, Enhanced Non Local mean Filter is applied on MR brain image for removal of noise and it replace the gray scale of the denoised image by the average, median filter. The Gaussian Radial basis function is used as a kernel function instead of Euclidean distance.

Our study has introduced a new modified methodology using Fuzzy C Means clustering with morphological reconstruction filters to segment the abnormal parts in multimodal images such as MR brain, MR breast and scintigraphy thyroid gland.MR scanning is helpful to analyze the internal behavior of the tumor, whereas scintigraphy scanning is used to analyze the shape and location of the gland and also prevent the cancerous stage. We have used samples from public dataset like Harvard brain dataset for the brain, RIDER for breast and TCGA – THCA for the thyroid gland. In the first step, we preprocessed the image by applying the median filter which removes the noisy information present in the given input image. In the second step, Fuzzy C Means clustering was used to segment the boundary of the abnormal part in the multimodal images. In the last step, morphological reconstruction filters are used to segment the accurate shape and location of the abnormal part in all the three multimodal images. The performance and the efficiency of the segmentation were computed using the measures such as entropy, eccentricity, MSE, PSNR, sensitivity, specificity, accuracy and computational time. The results from our modified method show an accurate segmentation for all multimodalities images within 4ms and its accuracy rate is nearly 95% for all types of images when compared with existing techniques such as K-means and GA with K- Means. A new modified method using Fuzzy C means clustering with morphological reconstruction filters was applied to segment the abnormal part accurately with minimum duration in all multimodal images


Entropy ◽  
2018 ◽  
Vol 20 (11) ◽  
pp. 827 ◽  
Author(s):  
Chundi Jiang ◽  
Wei Yang ◽  
Yu Guo ◽  
Fei Wu ◽  
Yinggan Tang

Spatial correlation information between pixels is considered to be very important in thresholding methods. However, it is often ignored and thus unsatisfied segmentation results maybe obtained. To overcome this shortcoming, we propose a new image segmentation approach by taking not only pixels’ spatial information but also pixels’s gray level into account. First, a non-local mean filter is imposed on the image. Then the filtered image and the original image together are adopted to build a two dimensional histogram, it is called non-local mean two dimensional histogram. Finally, a minimum relative entropy criteria is used to select the ideal thresholding vector. Since the non-local mean filter process is performed in a neighborhood of current pixel, it carries out the spatial information of current pixel. Segmentation results on several images illustrate the effectiveness of the proposed thresholding method, whose segmentation accuracy are greatly improved compared to most existing thresholding methods.


Sign in / Sign up

Export Citation Format

Share Document