scholarly journals Cubic Arcs in the Projective Plane Over a Finite Field of Order Twenty Three

Author(s):  
Najm A.M. Al-Seraji ◽  
Asraa A. Monshed

In this research we are interested in finding all the different cubic curves over a finite projective plane of order twenty-three, learning which of them is complete or not, constructing the stabilizer groups of the cubics in, studying the properties of these groups, and, finally, introducing the relation between the subject of coding theory and the projective plane of order twenty three.

2019 ◽  
Vol 30 (1) ◽  
pp. 158
Author(s):  
Najm A. M. Al-Seraji ◽  
Raad Ibrahim Kute

The main aims of this research are to find the stabilizer groups of cubic curves over a finite field of order 7 and studying the properties of their groups and then constructing the arcs of degree 2 which are embedding in cubic curves of even size which are considering as the arcs of degree 3. Also drawing all these arcs.


2019 ◽  
Vol 30 (1) ◽  
pp. 152
Author(s):  
Najm A. M. AL-Seraji ◽  
Hamza L. M. Ajaj

The main aim of this research is to introduce the relationship between the topic of coding theory and the projective plane of order four. The maximum value of size code M over the finite field of order four and an incidence matrix with the parameters, n (length of code), d (minimum distance of code) and e (error-correcting of code) have been constructed. Some examples and theorems have been given.


2021 ◽  
Vol 1818 (1) ◽  
pp. 012079
Author(s):  
S. H. Naji ◽  
E. B. Al-Zangana
Keyword(s):  

1952 ◽  
Vol 48 (3) ◽  
pp. 383-391
Author(s):  
T. G. Room

This paper falls into three sections: (1) a system of birational transformations of the projective plane determined by plane cubic curves of a pencil (with nine associated base points), (2) some one-many transformations determined by the pencil, and (3) a system of birational transformations of three-dimensional projective space determined by the elliptic quartic curves through eight associated points (base of a net of quadric surfaces).


1967 ◽  
Vol 63 (3) ◽  
pp. 647-652 ◽  
Author(s):  
Judita Cofman

D. R. Hughes stated the following conjecture: If π is a finite projective plane satisfying the condition: (C)π contains a collineation group δ inducing a doubly transitive permutation group δ* on the points of a line g, fixed under δ, then the corresponding affine plane πg is a translation plane.


2019 ◽  
Vol 18 (04) ◽  
pp. 1950069
Author(s):  
Qian Liu ◽  
Yujuan Sun

Permutation polynomials have important applications in cryptography, coding theory, combinatorial designs, and other areas of mathematics and engineering. Finding new classes of permutation polynomials is therefore an interesting subject of study. Permutation trinomials attract people’s interest due to their simple algebraic forms and additional extraordinary properties. In this paper, based on a seventh-degree and a fifth-degree Dickson polynomial over the finite field [Formula: see text], two conjectures on permutation trinomials over [Formula: see text] presented recently by Li–Qu–Li–Fu are partially settled, where [Formula: see text] is a positive integer.


10.37236/2582 ◽  
2012 ◽  
Vol 19 (4) ◽  
Author(s):  
Tamás Héger ◽  
Marcella Takáts

In a graph $\Gamma=(V,E)$ a vertex $v$ is resolved by a vertex-set $S=\{v_1,\ldots,v_n\}$ if its (ordered) distance list with respect to $S$, $(d(v,v_1),\ldots,d(v,v_n))$, is unique. A set $A\subset V$ is resolved by $S$ if all its elements are resolved by $S$. $S$ is a resolving set in $\Gamma$ if it resolves $V$. The metric dimension of $\Gamma$ is the size of the smallest resolving set in it. In a bipartite graph a semi-resolving set is a set of vertices in one of the vertex classes that resolves the other class.We show that the metric dimension of the incidence graph of a finite projective plane of order $q\geq 23$ is $4q-4$, and describe all resolving sets of that size. Let $\tau_2$ denote the size of the smallest double blocking set in PG$(2,q)$, the Desarguesian projective plane of order $q$. We prove that for a semi-resolving set $S$ in the incidence graph of PG$(2,q)$, $|S|\geq \min \{2q+q/4-3, \tau_2-2\}$ holds. In particular, if $q\geq9$ is a square, then the smallest semi-resolving set in PG$(2,q)$ has size $2q+2\sqrt{q}$. As a corollary, we get that a blocking semioval in PG$(2, q)$, $q\geq 4$, has at least $9q/4-3$ points. A corrigendum was added to this paper on March 3, 2017.


CAUCHY ◽  
2016 ◽  
Vol 4 (3) ◽  
pp. 131
Author(s):  
Vira Hari Krisnawati ◽  
Corina Karim

<p class="abstract"><span lang="IN">In combinatorial mathematics, a Steiner system is a type of block design. Specifically, a Steiner system <em>S</em>(<em>t</em>, <em>k</em>, <em>v</em>) is a set of <em>v</em> points and <em>k</em> blocks which satisfy that every <em>t</em>-subset of <em>v</em>-set of points appear in the unique block. It is well-known that a finite projective plane is one examples of Steiner system with <em>t</em> = 2, which consists of a set of points and lines together with an incidence relation between them and order 2 is the smallest order.</span></p><p class="abstract"><span lang="IN">In this paper, we observe some properties from construction of finite projective planes of order 2 and 3. Also, we analyse the intersection between two projective planes by using some characteristics of the construction and orbit of projective planes over some representative cosets from automorphism group in the appropriate symmetric group.</span></p>


Sign in / Sign up

Export Citation Format

Share Document