Selective arrangement of vesicles on artificial lipid membrane by biotin-avidin interaction

Author(s):  
Kai Hashino ◽  
Daiya Mombayashi ◽  
Yuto Nakatani ◽  
Azusa Oshima ◽  
Masumi Yamaguchi ◽  
...  

Abstract Lipid bilayers suspended over microwells on Si substrates are promising platforms for nanobiodevices that mimic cell membranes. Using the biotin-avidin interaction, we have succeeded in selectively arranging vesicles on the freestanding region of a lipid bilayer. When ternary lipid mixtures of saturated lipid, unsaturated lipid, and cholesterol are used, they separate into liquid-order (Lo) and liquid-crystalline (Lα) domains. A freestanding lipid bilayer prefers the Lα-phase over the Lo-phase because of the difference in their flexibility. In addition, the type of biotinylated lipid determines whether it is localized in the Lα-phase domain or the Lo-phase domain. As a result, the biotinylated unsaturated lipids localized in the Lα-phase domain aggregate in the freestanding lipid bilayer, and vesicles labeled with biotin selectively bind to the freestanding lipid bilayer by the biotin-avidin interaction. This technique helps to introduce biomolecules into the freestanding lipid bilayer of nanobiodevices via vesicles.

Antioxidants ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 430 ◽  
Author(s):  
Anja Sadžak ◽  
Janez Mravljak ◽  
Nadica Maltar-Strmečki ◽  
Zoran Arsov ◽  
Goran Baranović ◽  
...  

The structural integrity, elasticity, and fluidity of lipid membranes are critical for cellular activities such as communication between cells, exocytosis, and endocytosis. Unsaturated lipids, the main components of biological membranes, are particularly susceptible to the oxidative attack of reactive oxygen species. The peroxidation of unsaturated lipids, in our case 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), induces the structural reorganization of the membrane. We have employed a multi-technique approach to analyze typical properties of lipid bilayers, i.e., roughness, thickness, elasticity, and fluidity. We compared the alteration of the membrane properties upon initiated lipid peroxidation and examined the ability of flavonols, namely quercetin (QUE), myricetin (MCE), and myricitrin (MCI) at different molar fractions, to inhibit this change. Using Mass Spectrometry (MS) and Fourier Transform Infrared Spectroscopy (FTIR), we identified various carbonyl products and examined the extent of the reaction. From Atomic Force Microscopy (AFM), Force Spectroscopy (FS), Small Angle X-Ray Scattering (SAXS), and Electron Paramagnetic Resonance (EPR) experiments, we concluded that the membranes with inserted flavonols exhibit resistance against the structural changes induced by the oxidative attack, which is a finding with multiple biological implications. Our approach reveals the interplay between the flavonol molecular structure and the crucial membrane properties under oxidative attack and provides insight into the pathophysiology of cellular oxidative injury.


2019 ◽  
Author(s):  
◽  
Milica Utjesanovic

This thesis consists of three interrelated theoretical and computational modeling projects that investigate different aspects of peptide-lipid membrane interactions. (1) A general theoretical approach is formulated for the quantitative description of the detachment force distribution, P(F), and the corresponding force dependent detachment rate, k(F), of a peptide from a lipid bilayer, by assuming that peptide detachment from lipid membranes occurs stochastically along a few dominant diffusive pathways. Besides providing a consistent interpretation of the experimental data, the new method also predicts that k(F) exhibits catch-bond behavior (when, counter intuitively, the detachment rate decreases with increasing force). (2) The proposed multiple detachment pathways method is tested and validated for a particular peptide (SecA2-11) interacting with both zwitterionic POPC lipid and polar E. Coli membranes. Furthermore, molecular dynamics (MD) simulations are used to explored the conformational dynamics of SecA2-11 during its interaction with both POPC and anionic POPG lipid bilayers. (3) Finally, MD simulations are used to explore the conformational dynamics and energetics of the peptide melittin (MWT) and its diastereomer (MD4) interacting with POPC and POPG lipid bilayers. The obtained results provide further insight into the role of secondary structure in peptide-lipid bilayer interactions.


2020 ◽  
Vol 295 (15) ◽  
pp. 5067-5080 ◽  
Author(s):  
Akello J. Agwa ◽  
Poanna Tran ◽  
Alexander Mueller ◽  
Hue N. T. Tran ◽  
Jennifer R. Deuis ◽  
...  

Huwentoxin-IV (HwTx-IV) is a gating modifier peptide toxin from spiders that has weak affinity for the lipid bilayer. As some gating modifier toxins have affinity for model lipid bilayers, a tripartite relationship among gating modifier toxins, voltage-gated ion channels, and the lipid membrane surrounding the channels has been proposed. We previously designed an HwTx-IV analogue (gHwTx-IV) with reduced negative charge and increased hydrophobic surface profile, which displays increased lipid bilayer affinity and in vitro activity at the voltage-gated sodium channel subtype 1.7 (NaV1.7), a channel targeted in pain management. Here, we show that replacements of the positively-charged residues that contribute to the activity of the peptide can improve gHwTx-IV's potency and selectivity for NaV1.7. Using HwTx-IV, gHwTx-IV, [R26A]gHwTx-IV, [K27A]gHwTx-IV, and [R29A]gHwTx-IV variants, we examined their potency and selectivity at human NaV1.7 and their affinity for the lipid bilayer. [R26A]gHwTx-IV consistently displayed the most improved potency and selectivity for NaV1.7, examined alongside off-target NaVs, compared with HwTx-IV and gHwTx-IV. The lipid affinity of each of the three novel analogues was weaker than that of gHwTx-IV, but stronger than that of HwTx-IV, suggesting a possible relationship between in vitro potency at NaV1.7 and affinity for lipid bilayers. In a murine NaV1.7 engagement model, [R26A]gHwTx-IV exhibited an efficacy comparable with that of native HwTx-IV. In summary, this study reports the development of an HwTx-IV analogue with improved in vitro selectivity for the pain target NaV1.7 and with an in vivo efficacy similar to that of native HwTx-IV.


2020 ◽  
Author(s):  
Gerhard Wagner ◽  
Meng Zhang ◽  
Miao Gui ◽  
Zi-Fu Wang ◽  
Christoph Gorgulla ◽  
...  

Abstract G protein coupled receptors (GPCRs) are the largest superfamily of transmembrane proteins and the targets of over 30% of currently marketed pharmaceuticals. Although several structures have been solved for GPCR-G protein complexes, structural studies of the complex in a physiological lipid membrane environment are lacking. Here, we report cryo-EM structures of lipid bilayer-bound complexes of neurotensin, neurotensin receptor 1, and Gai1b1g1 protein in two conformational states, resolved to 4.1 and 4.2 Å resolution. The structures were determined in lipid bilayer without any stabilizing antibodies/nanobodies, and thus provide a native-like platform for understanding the structural basis of GPCR-G protein complex formation. Our structures reveal an extended network of protein-protein interactions at the GPCR-G protein interface compared to in detergent micelles, defining roles for the lipid membrane in modulating the structure and dynamics of complex formation, and providing a molecular explanation for the stronger interaction between GPCR and G protein in lipid bilayers. We propose a detailed allosteric mechanism for GDP release, providing new insights into the activation of G proteins for downstream signaling.


2016 ◽  
Author(s):  
Svetlana Baoukina ◽  
Dmitri Rozmanov ◽  
D. Peter Tieleman

AbstractLipid bilayers constitute the basis of biological membranes. Understanding lipid mixing and phase behavior can provide important insights into membrane lateral organization (the “raft” hypothesis). Here we investigate model lipid bilayers below and above their miscibility transition temperatures. Molecular dynamics simulations with the MARTINI coarse-grained force field are employed to model bilayers on a length scale approaching 100 nm and a time scale of tens of microseconds. Using a binary mixture of saturated and unsaturated lipids, and a ternary mixture of a saturated lipid, an unsaturated lipid and cholesterol we reproduce the coexistence of liquid-crystalline and gel, as well as liquid-ordered and liquid-disordered phases. By raising the temperature or adding hybrid lipids (with a saturated and an unsaturated chain), we induce a gradual transition from a two-phase to a one-phase state. We characterize the evolution of bilayer properties along this transition. Domains of coexisting phases change to dynamic heterogeneity with local ordering and compositional de-mixing. We analyze the structural and dynamic properties of domains, sizes and lifetimes of composition fluctuations, and calculate the in-plane structure factors.


Micromachines ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 134
Author(s):  
Hongmei Xu ◽  
Hyunhyuk Tae ◽  
Nam-Joon Cho ◽  
Changjin Huang ◽  
K. Jimmy Hsia

The solvent-assisted lipid bilayer (SALB) formation method provides a simple and efficient, microfluidic-based strategy to fabricate supported lipid bilayers (SLBs) with rich compositional diversity on a wide range of solid supports. While various studies have been performed to characterize SLBs formed using the SALB method, relatively limited work has been carried out to understand the underlying mechanisms of SALB formation under various experimental conditions. Through thermodynamic modeling, we studied the experimental parameters that affect the SALB formation process, including substrate surface properties, initial lipid concentration, and temperature. It was found that all the parameters are critically important to successfully form high-quality SLBs. The model also helps to identify the range of parameter space within which conformal, homogeneous SLBs can be fabricated, and provides mechanistic guidance to optimize experimental conditions for lipid membrane-related applications.


2021 ◽  
Author(s):  
Lawrence R. Walker ◽  
Michael T Marty

Antimicrobial peptides (AMPs) are cationic, amphipathic peptides that interact directly with lipid bilayers. AMPs generally interact with anionic lipid head groups, but it is less clear how the lipid tail length and saturation modulates interactions with membranes. Here, we used native mass spectrometry to measure the stoichiometry of three different AMPs-LL-37, indolicidin, and magainin-2-in lipid nanodiscs. We also measured the activity of these AMPs in large unilamellar vesicle leakage assays. We found that LL-37 formed specific hexamer complexes but with different assembly pathways and affinities that depended on the bilayer thickness. LL-37 was also most active in lipid bilayers containing longer, unsaturated lipids. In contrast, indolicidin incorporated to a higher degree into more fluid lipid bilayers but was more active with thinner, less fluid bilayers. Finally, magainin-2 incorporated to a higher degree into longer, unsaturated bilayers and showed more activity in these same conditions. Together, these data show that higher amounts of peptide incorporation generally led to higher activity and that AMPs tend to incorporate more into longer unsaturated lipid bilayers. However, the activity of AMPs was not always directly related to amount of peptide incorporated.


Molecules ◽  
2018 ◽  
Vol 23 (7) ◽  
pp. 1707 ◽  
Author(s):  
Mirza Wasif Baig ◽  
Marek Pederzoli ◽  
Piotr Jurkiewicz ◽  
Lukasz Cwiklik ◽  
Jiri Pittner

Fluidity of lipid membranes is known to play an important role in the functioning of living organisms. The fluorescent probe Laurdan embedded in a lipid membrane is typically used to assess the fluidity state of lipid bilayers by utilizing the sensitivity of Laurdan emission to the properties of its lipid environment. In particular, Laurdan fluorescence is sensitive to gel vs liquid–crystalline phases of lipids, which is demonstrated in different emission of the dye in these two phases. Still, the exact mechanism of the environment effects on Laurdan emission is not understood. Herein, we utilize dipalmitoylphosphatidylcholine (DPPC) and dioleoylphosphatidylcholine (DOPC) lipid bilayers, which at room temperature represent gel and liquid–crystalline phases, respectively. We simulate absorption and emission spectra of Laurdan in both DOPC and DPPC bilayers with quantum chemical and classical molecular dynamics methods. We demonstrate that Laurdan is incorporated in heterogeneous fashion in both DOPC and DPPC bilayers, and that its fluorescence depends on the details of this embedding.


2018 ◽  
Vol 115 (11) ◽  
pp. 2658-2663 ◽  
Author(s):  
Zeinab Al-Rekabi ◽  
Sonia Contera

The physical properties of lipid bilayers comprising the cell membrane occupy the current spotlight of membrane biology. Their traditional representation as a passive 2D fluid has gradually been abandoned in favor of a more complex picture: an anisotropic time-dependent viscoelastic biphasic material, capable of transmitting or attenuating mechanical forces that regulate biological processes. In establishing new models, quantitative experiments are necessary when attempting to develop suitable techniques for dynamic measurements. Here, we map both the elastic and viscous properties of the model system 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) lipid bilayers using multifrequency atomic force microscopy (AFM), namely amplitude modulation–frequency modulation (AM–FM) AFM imaging in an aqueous environment. Furthermore, we investigate the effect of cholesterol (Chol) on the DPPC bilayer in concentrations from 0 to 60%. The AM–AFM quantitative maps demonstrate that at low Chol concentrations, the lipid bilayer displays a distinct phase separation and is elastic, whereas at higher Chol concentration, the bilayer appears homogenous and exhibits both elastic and viscous properties. At low-Chol contents, the Estorage modulus (elastic) dominates. As the Chol insertions increases, higher energy is dissipated; and although the bilayer stiffens (increase in Estorage), the viscous component dominates (Eloss). Our results provide evidence that the lipid bilayer exhibits both elastic and viscous properties that are modulated by the presence of Chol, which may affect the propagation (elastic) or attenuation (viscous) of mechanical signals across the cell membrane.


2021 ◽  
Vol 21 ◽  
Author(s):  
Madhukar Garg ◽  
Anju Goyal ◽  
Sapna Kumari

: Cubosomes are highly stable nanostructured liquid crystalline dosage delivery form derived from amphiphilic lipids and polymer-based stabilizers converting it in a form of effective biocompatible carrier for the drug delivery. The delivery form comprised of bicontinuous lipid bilayers arranged in three dimensional honeycombs like structure provided with two internal aqueous channels for incorporation of number of biologically active ingredients. In contrast liposomes they provide large surface area for incorporation of different types of ingredients. Due to the distinct advantages of biocompatibility and thermodynamic stability, cubosomes have remained the first preference as method of choice in the sustained release, controlled release and targeted release dosage forms as new drug delivery system for the better release of the drugs. As lot of advancement in the new form of dosage form has bring the novel avenues in drug delivery mechanisms so it was matter of worth to compile the latest updates on the various aspects of mentioned therapeutic delivery system including its structure, routes of applications along with the potential applications to encapsulate variety drugs to serve health related benefits.


Sign in / Sign up

Export Citation Format

Share Document